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urvival analysis involve the set of  statistical techniques or procedures used 

Sto study time until an event occurs, these techniques are not without some 
conditions. One of  the basic assumptions is that, to enable a straight 

forward interpretation of  hazard rates of  subject's covariate(s) on some reference 
categories or in situations where variables are continuous in nature, the hazard 
rates must be constant through time “also known as the proportional hazard 
assumption” for cox regression. This assumption is often violated in medical 
practice where subject's vital statistics or measures are often time varying, as 
their medical situations changes with time. This paper under study a 
modification of  Piece wise survival model, where three levels of  Weibull 
distribution were assumed for baseline hazards, the sensitivity of  the baselines 
were assessed under four (4) censoring percentages (0%, 25%, 50%, & 75%) and 
sample sizes (n=100, n=500 & n=1000), for when models were Single 
parametric (SPM) and when partitioned – Piece wise Parametric Model (PPM). 
A Piece-wise Bayesian hazard model with structured additive predictors in 
which the functional form of  time varying covariate was incorporated in a non-
proportional hazards framework was developed, capable of  incorporating 
complex situations in a more flexible framework. Analysis was done utilizing 
MCMC simulation technique. Results revealed on comparison that the PPM 
outperformed the SPM with smaller DIC values and larger predictive powers 
with the LPML criterion and consistently so throughout all simulations.
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1.  Clinical situations including kidney infection (Sahu et al, 1997), heart transplant data 

(Aitkin et al, 1983). 

Background to the Study

Survival analysis is a statistical procedure for data analysis for which the outcome variable of  

interest is time until an event occurs. By time, we mean years, months, weeks, or days from the 

beginning of  follow-up of  an individual until an event occurs and by event, we mean death, 

disease incidence, re-lapse from remission, recovery (e.g., return to work) or any designated 

experience of  interest that may happen to an individual (David and Kleinbaum 2005).

Analysis of  survival times data has gained a considerable attention, particularly in the field of  

medicine, where the conventional denotation 'Survival analysis' arises from (Hennerfeind, 

2006).  In several other bio-statistical applications on censored follow-up time data, the 

interest lies mainly on the prognostic role of  clinical/biological covariates. To such end, non-

parametric and semi-parametric methods have been preferred over parametric ones. The most 

widely adopted tool is the Cox model, which avoids any assumption of  the functional form of  

the hazard function on time. However, such feature is not useful if  the interest lies on 

investigating the shape of  the hazard or in predictive modeling (Kooperberg et al. 1995) when 

the cox-model is extended to  time-varying covariates and time-dependent effects, which 

combine to give the most general version of  the hazard. Again, further progress would require 

specifying the form of  this function of  time. In such situation where time is observed to be 

truly continuous a flexible or semi-parametric strategy is required, where mild assumptions 

are made about the baseline hazard         . Specifically, we may subdivide time into reasonably 

small intervals and assume that the baseline hazard is constant in each interval, leading to a 

piece-wise survival model.

According to Fabio et al. (2010) the Piecewise Model (PM) arises as a quite attractive 

alternative to parametric models for the analysis of  time to event data. Although parametric in 

a strict sense, the PM can be thought of  as a nonparametric model as far as it does not have a 

closed form for the hazard function. This nice characteristic of  the PM allows us to use this 

model to approximate satisfactorily hazard functions of  several shapes. For this reason, the 

PM has been widely used to model time to event data in different contexts, such as; 

2. Hospital mortality data Clark and Ryan (2002), and cancer studies including 

leukemia (Breslow, 1974), gastric cancer (Gamerman, 1991), breast cancer (Ibrahim 

et al. 2001b) (see also Sinha et al., 1999) for an application to interval-censored data), 

Melanoma (Kim et al. 2006) and nasopharynx cancer (McKeague and Tighiouart, 

2000), among others. 

4. Time-Varying Effect of  Tumor Size and Soft Tissue Sarcoma Data by (Marano, et al 

2016)

In this paper we shall modify a Piecewise Weibull hazard baseline function of  survival model 

which can cope better with changes in baseline rate over time, leading to a better fit. This paper 

3. The PM has also been used in reliability engineering (Kim and Proschan,1991), 

(Gamerman, 1994), and economics problems (Gamerman, 1991) and (Bastos et al, 

2006).  
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An additive representation of  model 1

         3

Model Specification

The cox hazard model

The baseline hazard rate is unspecified, and assumes that covariates x = (x , …, x ) act 1 p

multiplicatively on the hazard rate through the exponential link function (Abiodun, 2007).

This is a re-parameterization of  the cox model

Where f (t) = logλ (t) which implies, exp(f (t)), is the baseline function, other aspects of  the 0 0 0

models include the functions f (t)z … f (t)z  are possibly functional form of  time varying 1 1 p p

covariate z , …, z  and γ is the usual linear part of  the predictor for some categorical covariates 1 p

(Abiodun, 2009) and (Hennerfeind et al., 2006)

 

The risk data used for this paper was simulated from a Weibull baseline hazard distribution 

which was used to generate survival times for sample sizes of  100, 500 & 1000 respectively. 

Various censoring levels or percentages of: no censoring “0%”, low “about 25%”, moderate 

“about 50%” and high “about 75%” were used. 

         1

Materials and Method    

investigate, employing three levels of  Weibull distributions as baseline; the effects of  ignoring 

time varying effects and regularized estimation of  non-linear functions applied often in 

prognostic factors. 

         2

With its various terms defined as

th
The functions f (z ),…, f (z ) are functional forms of  time varying covariates z ,…, z in the h  1h ph j 1h p ph

interval and f (s ) is a structured spatial effect, where  s, s =1, . . . ,S is either a spatial index, spat ih
th

with  s = s  if  subject i in the h  bit (interval) is from area s or it is an exact spatial coordinate s = i

(x ,y ), e.g. for centriods of  regions or if  exact locations of  individuals are known.  i s

where for each subject i there is a product of  h  terms, H  being the number of  intervals in which i i
ththe subject is followed. In the expression above, d  is the status of  the i  subject within the ih

interval T  (0 = alive or censored, 1 = failed); Δ  is the time spent in T by the subject. From h ih h

           4

Model Likelihood Function

The function f  = logλ  is the baseline effect for the kth interval of  PEMh h
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    This enables the effect of  each Z  to vary in each interval T  of  1j h

the original partition of  the follow-up: 

The time-dependent effects for each covariate are:  j = 1, …,p. Thus, for each Z , its 1j

values multiplied for a piecewise constant function:  in the parameters.

Gaussian Random Field (GRF) priors

expression (3) it may be seen that L  is proportional to the product of  Poisson likelihoods for PE

D with mean parameters:     As a consequence, the expression of  ih 

the Poisson regression model is:

Where h(i) indicate the interval where t  falls, i.e. the interval where individual i died or was i

censored. 

where   = log(λ ) are log-hazard parameters, and the term log(Δ ) is an offset.h ih

The expression of  the Piecewise model with regularized effects is the following:

         5

         6
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Data Analysis

Residual measures are used to investigate the departure from the proportional hazard 

assumption. Schoenfeld residuals are used to test the assumption of  proportionality. 

Schoenfeld residuals are usually calculated at every failure of  time under the proportional 

hazard assumption, and usually not defined for censored observations. The overall 

significance test is called the global test (sighted in Adeniyi and Akinrefon, 2018)

for a convenience choice of  mean 1 and variance 0.5. Using the uniroot function in R. 

parameters were given to be approximately  = 1.435523 and  = 1.101321. We considered 

studying the impact of  increasing and decreasing the variance of  the Weibull distribution 

while keeping the mean at 1. The result is displayed in table 1 below

The simulations apply the functional form of  time varying covariate by Bender, Augustin and 

Blettner (2005) given as

Test for Non-Proportionality

To test the hypothesis that the proportional hazard assumption is valid, the following 

statement of  hypothesis is made.
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2. Investigate the performance of  Single hazard models or Single Parametric models 

(SPM) and the modified Piece-wise model extension or Piece-wise Parametric 

models (PPM) under various censoring percentages and sample sizes employing their 

levels of  Weibull distributions as baseline.

Table 1: Shape and scale parameters of  the Weibull distributions

1. How the baseline hazards behave under functional forms of  time varying effect and 

continuous covariates in the presence of  spatial correlations and  

Model Specification to advance Simulation

The simulation study is to investigate:

Simulations and analysis were carried out in R using the coda package for spBayesSurv, 

version 3.6.2. Comparisons were done using Deviance Information Criterion (DIC) (smaller 

is better) which places emphasis on the relative quality of  model fitting and log pseudo 

marginal likelihood (LPML) (larger is better) focuses on the predictive performance. Both 

criteria are readily computed from the MCMC output.

Results and Interpretation of Simulation Study

E(T)

 
Var(T) a h

1 0.25 2.101377 1.129063

1 0.5 1.435523 1.101321

1 0.75 1.157975 1.052847
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Results and Interpretation of Simulation Study

n=100  
Weibull baseline with low variance of  0.25

 
Partitioning  is ignored (PI)

 
PPM (PD)

 
Parameter Estimates 

No censoring

 

β

 

DIC

 

LPML

 

DIC

 

LPML

 

β1

 

β2 β3 β3

1.083  

 

900.3891

 

-450.8276

 

878.2437

 

-444.161

 

2.1120

 

-1.6191 -

2.8592

-29.978

25%

 

0.9342

 

671.157

 

-336.9246

 

664.8024

 

-334.399

 

0.8049

 

-0.0379 0.8172 -9.0184

50%

 

1.062  

 

503.4064

 

-252.7583

 

500.7776

 

-251.824

 

0.7330

 

0.6288 1.1786 -88.591

75%

 

1.147

 

284.3667

 

-143.1534

 

287.7841

 

-148.394

 

0.4906

 

1.0942 2.4062 -14.162

Weibull baseline with intermediate variance of  0.5

 

PI

 

PD

 

Parameter Estimates

No censoring

 

β

 

DIC

 

LPML

 

DIC

 

LPML

 

β1

 

β2 β3 β3

1.388

 

1008.247

 

-504.8157

 

986.830

 

-494.999

 

2.4477  

 

-1.3555 -

2.7600

-3.4787

25%

 

1.305

 

732.8461

 

-367.927

 

725.413

 

-364.1833

 

1.2463   -0.2178 0.5533 -91.743

50%

 

1.296  

 

540.0572

 

-271.5071

 

538.297

 

-270.9676

 

0.9155

   

0.5045  1.6572 -107.66

75%

 

1.665

 

296.9573

 

-149.734

 

287.729

 

-145.1475

 

0.4918  

 

0.4660 10.515 5.8117

Weibull baseline with high variance of  0.75

 

PI

 

PD

 

Parameter Estimates

No censoring β DIC LPML DIC LPML β1 β2 β3 β4

1.598 1078.553 -540.2496 1065.927 -536.175 2.3533 -1.1581 -

2.5135

-8.2776

25% 1.542 772.0216 -387.4007 755.6687 -381.620 1.6048     -0.4414 1.4104 1.2518

50% 1.432 570.3035 -286.657 570.6291 -289.261 1.0935 -0.1834   2.9965  2.1824

75% 1.586 311.8024 -157.3363 210.647 -105.213 1.1233 1.13243 2.8323 2.3014

n=500

Weibull baseline with low variance of  0.25

Partitioning  is ignored Partitioning is done Parameter Estimates

No censoring β DIC LPML DIC LPML β1 β2 β3 β4

0.7422

 

4033.102

 

-2017.044

 

4020.982

 

-2011.72

 

0.8626  

 

-0.5374

 

-0.1370 -2.0944

25% 0.99  

 

3278.719

 

-1639.99

 

3269.356

 

-1636.23

 

1.0717

 

-0.0804

 

-0.6797 0.9899

50% 1.113

 

2364.521

 

-1182.72

 

2369.647

 

-1186.77

 

1.2679

 

-0.1969   

 

0.30105 -0.6474

75% 1.201

 

1243.873

 

-622.8476

 

1248.3

 

-625.933

 

0.9743

 

0.2131

 

0.1425

 

1.2370  

Weibull baseline with intermediate variance of  0.5

 

PI PD
 

Parameter Estimates for PEM

No censoring β
 

DIC
 

LPML
 

DIC
 

LPML
 

β1
 
β2

 
β3

 
β4

1.061 4686.231 -2343.574 4664.45 -2333.295  1.2189  -0.7703  0.7253  -2.9976

25% 1.35 2519.796 -1260.203 2518.78 -1261.124  1.6592  -0.5801  -

1.2489
 

0.06127

50% 1.297

 
2638.277

 
-1319.477

 
2624.79

 
-1313.904

 
1.5359

 
-0.6076

 
-

0.8941

 

3.3212  

75% 1.397

 

1364.274

 

-682.8361

 

1349.48

 

-676.838

 

1.4953

 

-0.3659

 

-

0.9157

 

15.9160

Weibull baseline

 

with high variance of  0.75

 

PI PD

 

Parameter Estimates

 

No censoring β

 

DIC

 

LPML

 

DIC

 

LPML

   

β1

 

β2

 

β3

 

β4

1.314

 

5117.817

 

-2559.707

 

5109.984

 

-2556.26

 

1.7013

 

-0.7955    -1.1526  -0.5874  

25% 1.398 3898.273 -1949.766 3869.554 -1935.94 1.5475 -0.3632 -0.8892 4.3118

50% 1.544 2651.088 -1326.259 2645.09 -1323.97 1.9363   -1.0053 -1.0276 0.3476

75% 1.739 1390.576 -696.2893 1385.082 -694.934 1.8493 -1.1994 1.0844  1.8478  
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n=1000  
Weibull baseline with low variance of  0.25

 
Partitioning  is ignored

 
Partitioning is done

 
Parameter Estimates

No censoring

 

β

 

DIC

 

LPML

 

DIC

 

LPML

   

β1

 

β2 β3 β4

0.825

 

9506.566

 

-4754.146

 

9466.548

 

-4734.02

 

1.1574

 

-0.6495 -0.7254 -

1.396

25%

 

0.7595

 

6310.06

 

-3155.877

 

6306.177

 

-3154.69

 

0.8024

 

-0.2136 -0.1869 2.0150

50%

 

0.8459

 

4573.932

 

-2287.615

 

4570.375

 

-2286.98

 

1.0371   -0.4995 -0.6433 2.5102

75%

 

0.9339

 

2461.439

 

-1231.467

 

2472.358

 

-1238.24

 

1.2121

 

-0.6227 -0.2574 -

0.8896  

Weibull baseline with intermediate variance of  0.5

 

PI

 

PD

 

PM Parameter Estimates

No censoring

 

β

 

DIC

 

LPML

 

DIC

 

LPML

   

β1

 

β2 β3 β4

1.123

 

10820.7

 

-5411.503

 

10776.3

 

-5389.516

 

1.4273

 

-

0.8297

0.9314 -0.6932  

25%

 

0.9805  

 

7083.88

 

-3542.516

 

7086.044

 

-3544.98

 

1.0542

 

-

0.3835

-

0.2667

1.65377  

50%

 

1.101

 

4991.19

 

-2495.927

 

4998.826

 

-2501.537

 

1.1879

 

-

0.2026

-

0.8005

0.24082

75%

 

1.26  

 

2616.16

 

-1308.904

 

2619.639

 

-1312.382

 

1.5240

 

-

0.6691

-

0.3263

-0.7864

Weibull baseline with high variance of  0.75

 

PI

 

PM

 

Parameter Estimates

0% β DIC LPML DIC LPML β1 β2 β3 β4

1.35

9  

11679.5 -5841.049 11615.29 -5808.81 1.487 6.407e-01 7.365e-01 2.760e+0

4

25% 1.21

2  

7489.133 -3744.906 7432.219 -3789.62 1.2854 -0.3711 0.11473  0.8471

50% 1.31

7

5213.994 -2607.245 5204.697 -2603.91 1.4699 -0.3473   -0.6845 -0.6357

75% 1.59

3  

2647.961 -1324.38 2632.603 -1327.79 1.8139  -0.5563    -0.6096 0.3036

When variance parameters for the Weibull baseline hazard were examined for low at 0.25, 

moderate or Intermediate at 0.5 & high at 0.75, estimates become worse with increase in 

variance and sample sizes, reflective in high DIC values and weak predictive power. In all of  

these, the Piece wise models out-performed the single ones; we again, noticed that the mean 

posterior estimates were better with increase in censoring percentages.

Table 2, present the mean posterior estimates, DIC and LPML across all sample sizes and 

censoring percentages for single models and for the modified Piece wise models in the presence 

of  the functional form of  Time changing covariate, we observed that the values of  estimates 

when models were fitted with data partitioning having observed the graph of  beta against time 

for appropriate cut points are different (not constant), which indicate a change of  effect 

parameters over time. We observed that the PPMs perform better than the single models 

throughout the simulations, for all censoring percentages & sample sizes. 

Interpretation
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We observed that the mean posterior estimates when the PPM - Model II was fitted, indicates 
change in effect parameters over time in all four intervals, with DIC and LPML values 
suggesting that PPM performs better than the Single model, for all censoring percentages, 
sample sizes & for the three (3) levels Weibull baseline. When the Weibull baseline hazard gain 
spread estimates were worse. In all of  these, the PPM out-performed the SPM.

References

The researcher recommends that:

Abiodun, A. A. (2007). Analyzing competing risk survival time data using Cox and parametric 
proportional hazards models, JNSA. 19,74-79.

Abiodun, A. A. (2009). A Bayesian approach to exploring unobserved heterogeneity in Clustered 
survival and competing risk data, JNSA 20

Recommendations

Adeniyi, O. I. & Akinrefon, A. A. (2018). First birth interval: Cox regression model with time 
varying covariates, CJPS.

Conclusion

1. other life distributions should be assumed as baseline to study the behavior of  the 
models

2. combinations of  baseline distributions to study competing risk problems

Fan, J. & Gijbels, I. (1996). Local polynomial modelling and its applications, Chapman & Hall. 
London

Aitkin, M., Laird, N. & Francis, B. (1983). A reanalysis of  the Stanford heart transplant data 
(with discussion), J Am Stat Assoc 78, 264–292.

Fabio, N. D, Rosangela, H. L, Enrico, A, & Dipak, K. (2010). Extensions of  the piecewise 
exponential model, Corpus ID: 53392910

Bastos, L. S. & Gamerman, D. (2006). Dynamic survival models with spatial frailty, Lifetime 
Data Anal 12, 441–460.

Arjas, E. & Gasbarra, D. (1994). Nonparametric Bayesian inference from right censored 
survival data, Stat Sinica 4: 505–524.

Breslow, N. E. (1974). Covariance analysis of  censored survival data, Biometrics 30, 89–99.

Bender R., Augustin, T. & Blettner. M. (2005). Generating survival times to simulate cox 
proportional hazards models, Statistics in Medicine 24 (11) 1713-1723

Clark, D. E. & Ryan, L. M. (2002). Concurrent prediction of  hospital mortality and length of  
stay from risk factors on admission, Health Services Res 37, 631–645.

David, G. & Kleinbaum, M. K. (2005). Survival analysis: A self-learning text, New York, NY: 
Springer 2005

IJIRSSSMT | p.174



Sinha, D., Chen, M. H. & Gosh, S. K. (1999). Bayesian analysis and model selection for 

interval-censored survival data, Biometrics 55: 585–590.

Marano, G., Boracchi, P. & Biganzoli, E. M. (2016). Estimation of  the piecewise exponential 

model by Bayesian P-Splines via Gibbs sampling: Robustness and reliability of  

posterior estimates. Open Journal of  Statistics, 6, 451-468

Stone, C., Hamsen, M., Kooperberg, C. & Truong, Y. (1997). Polynomial splines and their 

tensor products in extended linear modelling, The Annals of  Statistics, 25, 1371-1470. 

Sahu, S. K., Dey, D. K., Aslanidu, H. & Sinha, D. (1997). Aweibull regression model with 

gamma frailties for multivariate survival data, Lifetime Data Anal 3, 123–137.

Kooperberg, C. & Intrator. N. (1995). Trees and splines in survival analysis, Statistical Methods 

in Medical Research, 4 237–261.

Kim, S., Chen, M. H., Dey, D. K. & Gamerman, D. (2006). Bayesian dynamic models for survival 

data with a cure fraction, Lifetime Data Anal 13: 17–35.

Zhou, H, & Hanson, T. (2017). A unified framework for fitting Bayesian Semiparametric 

Models to Arbitrarily Censored Survival Data, Including Spatially-Referenced Data, 

Journal of  the American Statistical Association. 

McKeague, I. W. & Tighiouart, M. (2000). Bayesian estimators for conditional hazard functions, 

Biometrics 56, 1007–1015.

Gamerman, D. (1994). Bayes estimation of  the piece-wise exponential distribution, IEEE Trans 

Reliab� 43: 128–131.  

Gamerman, D. (1997). Efficient sampling from the posterior distributions in generalized linear models, 

Statistics and Computing. 7, 57-68.

Hastie, T. & Tibshirani, R. (1990). Generalized additive models, Chapman and Hall London.

Hennerfeind, A, Brezger, A. & Fahrmeir, L. (2006). Geoadditive survival models, Journal of  

the American Statistical Association, 101 (475), 1065–1075.

Friedman, J. & Silverman, B. (1989). Flexible parsimonious smoothing and additive 

modelling (with discussion), Technometrics, 31, 3-39. 

Ibrahim, J. G., Chen, M. H., & Sinha, D. (2001). Bayesian survival analysis, Springer-Verlag.

Kim, J. S. & Proschan, F. (1991). Piecewise exponential estimator of  the survival function, IEEE 

Trans Reliab 40: 134–139.

IJIRSSSMT | p.175


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

