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A b s t r a c t

his paper, present the optimum compressive strength and characterization of 

TGeopolymer Concrete (GP) produced by metakaolin and metabentonite. In 
the need for sustainable and eco-friendly concrete binding materials as 

alternative to ordinary Portland cement (OPC). Production of OPC required high 
amount of energy and emission of about 8% CO  to the atmosphere is significant to 2

Green House Gasses (GHG). Utilization of alkaline activation materials in concrete 
may be a better alternative solution. In the Design of Experiment (DOE), randomized 
block factorial design of Response Surface Methodology (RSM) was used to optimize 
the strength. Metabentonite was replaced at 10, 20, 30, 40 and 50 wt.% of Metakaolin. 
The mixes were activated with 12 molar concentration (12M) of sodium hydroxide 
(NaOH) solutions and Na Si O/NaOH ratio of 1.5:1 at 50, 60 70, 80, and 90 % alkali 2 3

doss (alkaline liquid-to-binder). The mix design properties such as binder ratio 
(metabentonite to metakaolin) and alkaline liquid-to-binder ratio were statistically 
employed as continuous (independent) variables to optimize the response factor 
(compressive strength). Compared to the control sample (metakaolin-based GPC), the 
metabentonite incorporated based GPC exhibited higher compressive strengths at up 
to 25 wt.% of metabentonite replacement. The models predicted the response of 
compressive strength with the variability of  less than 5%. Moreover, the correlation 
between the experimental and optimized compressive strengths yielded high precision 

2with 96.51% “R ". Therefore, FTIR was used for characterization and the response 
models would be advantageous in optimization of mix design proportions to obtain the 
target compressive strength of GPC produced by metabentonite and metakaolin.
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Background to the Study

Geopolymer concrete utilizes Supplementary Cementitious Materials (SCMs) as the source 

materials for its production and it exhibits higher mechanical strength Bouaissi et al., (2019) 

and excellent durability properties Aiken et al., (2018) than Portland Cement Concrete (PCC). 

SCMs have received extensive attention by researchers that have successfully applied them to 

the construction of  civil engineering infrastructure to replace PC utilization Mark et al., 

(2019). Production of  PC required high amount of  energy and emission of  about 8% CO  to 2

the atmosphere is significant to Green House Gasses (GHG). Consequently, about 85% 

reduction of  CO emissions per ton and 58% reduction of  energy needs (MJ/ton) were 2

observed during geopolymer binder production compared with PC Davidovits, (1994).

Geopolymers are principally known for their high compressive strength, acid resistance and 

waste encapsulation capability, though the inorganic framework structure renders these 

materials intrinsically fire-resistant (Davidovits, 1989; Davidovits, 1991). Geopolymers may 

be synthesized at ambient or elevated temperature by alkaline activation of  a large variety of  

alumino-silicate materials obtained from industrial wastes (Bakharev et al., 1999; Duxson & 

Provis, 2008), calcined clays (Duxson et al., 2005; Panagiotopoulou et al., 2007), natural 

minerals (Chen and Brouwers, 2007), or mixtures of  two or more of  these materials (BS1881-

125,2013; Khale and Chaudhary, 2007). 

Response Surface Methodology (RSM) is a statistical and analytical method that examines 

the effect of  a set of  quantitative experimental variables of  factors on response Myers et al., 

(2009). RSM is usually employed to identify a set of  vital elements (operating conditions) 

generating the best" response Myers et al., (2009). However, an appropriate Design of  

Experiment (DOE) can be used to evaluate the effects of  these factors with a small number of  

experiments Onoue & Bier (2017). The ultimate objective is to minimize the required effort 

and maximize the expected benefit Onoue & Bier (2017). Therefore, the needed action or the 

desired use in any practical circumstance can be termed as optimization that evaluates a 

function's conditions, thus minimizing or maximizing the values Onoue & Bier (2017).

The obtained results indicated that the strength value for the materials could be optimized 

using numerical techniques and the DOE in the response surface method, Onoue & Bier 

(2017). In the study, while the flexural strength was maximized, the mix proportion properties 

were minimized.    There was a strong correlation between the experimental flexural and 

optimized flexural strength. However, Ramkumar et al., (2017) in the “Application of  

response surface methodology for optimization of  alkali activated slag concrete", employed 

the CCD of  the RSM to optimize the mechanical strengths of  fly ash-based GPC. It was 

concluded that the RSM validated the influence factors with an average difference of  less than 

5%, hence acceptable. However, the optimization of  metakaolin-based GPC product 

modified by metabentonite is a novel development as no study has been conducted on 
2

optimizing its strength through RSM-2  Factorial Design.

  

In this regard, this paper aims to obtain an optimum mix design and mechanical parameters of  

metabentonite/metakaolin-based geopolymer concrete using response surface method 
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2
(RSM). Therefore, the 2  Factorial Design model of  RSM was employed to arrive at an 

optimum combination of  mix parameters of  metabentonite/metakaolin-based GPC. The 

selected mix parameters were metabentonite-to-metakaolin ratio, alkaline liquid-to-binder 

ratio and 12 molar concentrations of  NaOH and Na2Si3O/NaOH ratio of  1.5:1, 28 days 

curing times as mix design proportions. In addition, the characteristic compressive strengths 

of  M 25 concrete grades were selected as the target strengths. The GPC fresh samples were 
O

cured under ambient conditions for 24hours, demoulded and then 60 C heat curing 

conditions for 24 hours. Ultimately, the developed models can be applied to predict the 

compressive strength of  geopolymer concrete incorporating geological clay mineral 

pozzolans in a building sector, thus reducing cost, energy, and time while conducting 

laboratory works.

Materials and Methods

Raw Materials

Bentonite and kaolin were locally sourced and used as precursor materials then beneficiated, 

heated at 105 °C for 24 h to remove the water content. The dried bentonite and kaolin were 

crushed and grounded (3000 cycles) in a ball mill to increase its fineness as cement (range of  

100μm), calcined at 650°C and 700°C for two hours to acquire the metabentonite and 

metakaolin respectively.

Figure 1: Source materials used: (a) Bentonite and (b) Kaolin.

Therefore, both bentonite and kaolin, as shown in Figure 1, were used as the source materials 

to produce GPC, while the fine aggregate were source locally and coarse aggregate were 

source from quarry site and tests were carried out in accordance with BS EN 933-1 and BS EN 

12620: (2002). Alkaline were sourced from a chemical supplier. The NaOH was in pellet form 

and Na SiO  in form of  liquid gel. The Specific Gravity (SG) of  the precursor materials was 2 3

obtained following the BS EN (2016) procedure through kerosene and SG bottle, the results of  

which are presented in Table 1.

Table 1: Physical properties of  the precursor materials used.
Names of property  Metabentonite  Metakaolin  
Specific Gravity (g/cm3)

 Physical form

 
Colour

 

3.23

 Powder

 
Grayish -

 

brown

 

2.34

 Powder

 
Baby Pink
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The chemical compositions of  the metabentonite and metakaolin samples were carried out 

using X-Ray fluorescence (XRF) analysis (X-supreme 8000) instrument and the result of  XRF 

indicates that chemical composition of  the precursor was conforming to BS EN 197-1: (2011) 

for natural calcined pozzolans (Q). The obtained results are shown in Table 2.

Table 2: Oxide composition of  Metabentonite and Metakaolin

Source: Laboratory work (2021)

Table 3: Comparison of  oxide composition

480 g of  NaOH pellets were measured and dissolved in 1ltr of  clean water to prepare 12 M 

activator using Na SiO to NaOH solutions with a ratio of  1.5:1. The activator and proportion 2 3

were selected in compliance with those of  other relevant studies Oyebisi et al., (2020)

Response Surface Method (RSM)

Randomized Block Factorial Design
2

The Randomized Block2  Factorial Design of  RSM were employed to evaluate the interaction 

between the selected continuous variables (A; metabentonite to metakaolin ratio and B; 

alkaline liquid to binder ratio) and response variable, compressive strength (MPa). Design 

Element

 
Metabentonite Content 

(%)

 

 Metakaolin Content 

(%)

Al2O3(%)

 

25.5632

  

41.9270

SiO2(%)

 

51.0558

  

52.4100

P2O5(%)

 

0.3781

  

-

SO3(%)

 

0.0977

  

0.1310

K2O(%)

 

0.3879

  

0.5801

CaO(%)

 

5.4604

  

0.0840

TiO2(%)

 

1.1196

  

0.0500

MnO(%)

 

0.0902

  

0.3780

Fe2O3(%)

 

14.2364

  

0.9080

NiO(%)

 

0.0643

  

-

ZnO(%)

 

0.0051

  

0.0011

SrO(%)

 

0.6289

  

0.0021

MoO3(%)

 

0.0074

  

-

PdO(%) 0.0181 -

Ag2O(%) 0.0043 -

Sb2O5(%) 0.0023 -

BaO(%) 0.8480 -

PbO(%) 0.0116 0.0020

Na2O(%) - 0.2890

MgO(%) - 0.4302

SrO(%) 0.6289 -

Precursor  Oxides  Value  ASTMC618-05  Getso A. I (2013)  
Metabentonite

 Al2O3+SiO2 + Fe2O3 
 

90.8554%
  

≥70%
  Metakaolin

 
Al2O3+SiO2 + Fe2O3

 
95.2450%

 
≥70%

 
94.90%

 Average

 
CaO + MgO

 
3.051%

 
≤ 5%

 
0.29%
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2
expert 13 statistical software was engaged, and the 2  Factorial Design was created using two 

different continuous variables, the results of  which are shown in table 4.

Table 4: Factors

2In the study, 2  Factorial Design were considered to test two factors A (metabentonite) and B 

(Alkali doss) each measured in percentage. If  A has (a = 5; 10, 20, 30, 40, and 50) levels and B 

has (b = 5; 50, 60, 70, 80, 90) levels, each complete replicate of  the experiment will contain (a x 

b = 5 x 5 = 25) runs (or treatment combinations).

Table 5: Concrete mix proportions for cube samples

Development of Mathematical Model

In RSM, the standard factorial in a randomized block design, choosing a model type depends 

on the nature of  accessible information and levels for each factor. For the most part, for an 

experiment matrix that has been as of  now built up, the historical data or user-defined model 

was applied for the development and investigation of  a model Kumar & Baskar, (2014).

Factor  Name  Level  Low Level  High Level  Std. Dev.  Coding  
A

 
Metabent

 
37.89

 
10.00

 
50.00

 
0.0000

 
Actual

 B

 

Alkali Doss

 

78.32

 

50.00

 

90.00

 

0.0000

 

Actual

 

 

S/N

 

Metabentonite 

(%)

 

Alkali 

(%)

 

Metabent.

 

(kg/m3)

 

Metakaolin

 

(kg/m3)

 

Fine Agg. 

(kg/m3)

 

Coarse Agg. 

(kg/m3)

 

Alkali 

(kg/m3)

 

1

 

40

 

50

 

240

 

360

 

600

 

1200

 

300

 

2

 

10

 

50

 

60

 

540

 

600

 

1200

 

300

 

3

 

10

 

80

 

60

 

540

 

600

 

1200

 

480

 

4

 

50

 

80

 

300

 

300

 

600

 

1200

 

480

 

5

 

30

 

60

 

180

 

420

 

600

 

1200

 

360

 

6

 

50

 

60

 

300

 

300

 

600

 

1200

 

360

 

7

 

10

 

90

 

60

 

540

 

600

 

1200

 

540

 

8

 

30

 

90

 

180

 

420

 

600

 

1200

 

540

 

9

 

40

 

90

 

240

 

360

 

600

 

1200

 

540

 

10

 

50

 

70

 

300

 

300

 

600

 

1200

 

420

 

11

 

40

 

80

 

240

 

360

 

600

 

1200

 

480

 

12

 

40

 

70

 

240

 

360

 

600

 

1200

 

420

 

13

 

20

 

50

 

120

 

480

 

600

 

1200

 

300

 

14

 

30

 

80

 

180

 

420

 

600

 

1200

 

480

 

15

 

20

 

80

 

120

 

480

 

600

 

1200

 

480

 

16

 

20

 

90

 

120

 

480

 

600

 

1200

 

540

 

17

 

10

 

70

 

60

 

540

 

600

 

1200

 

420

 

18

 

20

 

70

 

120

 

480

 

600

 

1200

 

420

 

19

 

30

 

50

 

180

 

420

 

600

 

1200

 

300

 

20

 

10

 

60

 

60

 

540

 

600

 

1200

 

360

 

21

 

40

 

60

 

240

 

360

 

600

 

1200

 

360

 

22

 

20

 

60

 

120

 

480

 

600

 

1200

 

360

 

23

 

30

 

70

 

180

 

420

 

600

 

1200

 

420

 

24

 

50

 

90

 

300

 

300

 

600

 

1200

 

540

 

25

 

50

 

50

 

300

 

300

 

600

 

1200

 

300
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The polynomial equation of  the correlation between the response variables and independent 

variables can be expressed in a general form as follows (Kumar & Baskar, (2014).)

Where Y is the response, xi and xj are the independent variables (i and j are the range from 1 to 

k), β  is the constant coefficient, β , β  and β  are the coefficient for the linear, quadratic and o i ii ij

interaction effect, and ε represent the error. Sum of  squares, F value, probability (P-value) with 
295 % confidence level and coefficient of  correlation (R ), ranging from 0 to 1 was employed to 

predict the fitness or measure the quality of  the developed model. A highly significant and 
2accurate model is indicated by R  close to 1.

Optimization: The Desirability Approach

The desirability function approach is one of  the most widely used methods in industry for the

Optimization of  response surface processes. It is based on the idea that the "quality" of  a 

product or process that has multiple quality characteristics, with one of  them outside of  some 

"desired" limits, is completely unacceptable. The method finds operating conditions x that 

provide the "most desirable" response values.

For each response Yi(x), a desirability function di(Yi) assigns numbers between 0 and 1 to the 

possible values of  Yi, with di(Yi) = 0 representing a completely undesirable value of  Yi and 

di(Yi) = 1 representing a completely desirable or ideal response value. The individual 

desirabilities are then combined using the geometric mean, which gives the overall desirability 

D:�

1/k
D = (d (Y ) x d (Y ) x … x d (Y )) � � � � � (2)1 1 2 2 k k

With k denoting the number of  responses. Notice that if  any response Yi is completely 

undesirable (di(Yi) = 0), then the overall desirability is zero. In practice, fitted response values 

iare used in place of  the Yi.

Depending on whether a particular response Yi is to be maximized, minimized, or assigned a 

target value, different desirability functions di(Yi) can be used. A useful class of  desirability 

functions was proposed by (Derringer and Suich1980; Myers, et al., 2009). Let Li, Ui and Tibe 

the lower, upper, and target values, respectively, that are desired for response Yi, with Li ≤ Ti ≤ 

Ui.

If  a response is of  the "target is best" kind, then its individual desirability function is with the 

exponents s and t determining how important it is to hit the target value Myers, et al., (2009). 

For s = t = 1, the desirability function increases linearly towards Ti; for s < 1, t < 1, the function 

is convex, and fors> 1, t > 1, the function is concave.
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         (3)

If  a response is to be maximized instead, the individual desirability is defined as with

         (5)

The desirability approach consists of  the following steps:

i. Conduct experiments and fit response models for all k responses;

ii. Define individual desirability functions for each response;

iii. Maximize the overall desirability D with respect to the controllable factors.

Mixing Procedure for Geopolymer Concrete

The mixing method of  geopolymer concrete was performed by adopting the traditional 

techniques used in the production of normal concrete (Rangan. 2011). Firstly, all materials; 

metabentonite, metakaolin, fine aggregate, and coarse aggregate were mixed in a dry 

condition in the concrete mixer for approximately three minutes. The alkaline solution was 

mixed for approximately two minutes. After that, the alkali liquid activator components were 

added to the dry materials and the mixing was continued for 7 minutes for uniform mixing. 

The mixing was continued for further 3 minutes and the GPC were poured into pre-oiled 

mould (Rangan. 2011). The fresh GPC was compacted by using vibrating table and casted 

into the cube specimens of  size 100mm X100mm X 100mm, demoulded after 24h and oven 

heat ounder constant curing temperature of  60 C for 24h and curing duration of  28d under 

room temperature. The alkaline activator-to-binder ratio was varied at 50%, 60%, 70%, 80%, 

and 90% and the metabentonite-to-metakaolin ratio was 10%, 20% 30%, 40% and 50% with 

solution molar concentrations of  12M and Na SiO /NaOH ratio of  1.5:1.2 3

Test Methods

The data to be followed in the developed models using RSM for optimization were evaluated 

from the laboratory analysis. To evaluate the mutual correlation with the variables, 

compressive strength at 28 days as hardened properties of  geopolymer concrete were taken as 

the response of  interest.

The characterizations of  the used source materials were analyzed using Fourier Transform 

Infrared (FTIR) Spectroscopy carried out using FTIR (Cary 630 Agilent Technology USA 
−1

equipment). All FT-IR spectra were recorded in the range of  4000–400 cm  at a resolution of  
.

4 cm
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Result and Discussion

Response Surface Optimization

The experimental trials were made by the suggested DOE input from RSM. The resulted 

compressive strength of  various mixes has been made as a step for further analysis. 

Analysis of Variance

Following the creation of  randomized block factorial design and establishment of  response 

surface design from data in a worksheet, as illustrated in Table 4, the fitted model analysis 

results for a response surface design are presented in Table 6. The model's accuracy and the 

influence of  continuous variables on the compressive strength were examined by analyzing 

variance (ANOVA).

The regression model in Table 6 indicates that the terms in the model have a significant effect 

on the compressive strength because p-value<0.0001, which is less than�-level (0.05) 

Asadzadeh and Khoshbayan (2018). Consequently, the p-values for the continuous variables, 

A and B are <0.0001 and 0.0006 respectively, indicating the significant linear effect. The 

resisting performance of  the concrete against compressive failure depends on the proportions 

of  alkaline liquid and binder.

3
The terms AB , were regarded as non-significant terms and removed from the model 

according to the P-value. Therefore, according to Table 6, the P-values of  0.1475, and 
2 3

0.1481for the squared and cubic effects, B  and B  respectively, were higher than 0.05, 

indicating that the relationship between compressive strength and B exhibited no significant 
2 2 2 3 2 2

quadratic effect. However, the p-values of<0.0001 each for the AB, A , AB , A B, A , A B , 
3 4 4

A B, A  andB  respectively, were less than 0.05, indicating a significant interaction effect. The 

effect of  A on the resisting performance of  concrete against failure depends on B. However, as 

shown in Table 6, the F-value for all significant terms was greater than 5, confirming that the 

model terms were substantial Oyebisi et al., (2020) to the yield of  compressive strength. 

Finally, the model yielded no lack of  fit or pure error because both linear and interaction terms 

were significant, hence included in the model.
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Table 6: ANOVA for Compressive strength, CP12M1.5

2 2 2The model summary yielded R , R (adj), and R  (pred) as 96.51%, 96.15%, and 95.82%, 
respectively, showing that the model equation could predict the relationship between the 
response variable and continuous variables at 100% confidence bound. Ultimately, this 
developed model equation can be used to predict the compression optimization of  the 
metakaolin-based GP concrete strength incorporated with metabentonite.

2 2 2 2
CP12M1.5 = � 25.4 – 2.45A – 0.47B + 2.18AB – 6.96A + 0.6077B + 0.84A B – 0.8629AB

3 3 2 2 3 4 4� � +1.61A + 0.2B  – 1.1A B  – 1.76A B+ 4.63A  – 1.51B � � � (6)

Diagnostic plots are useful to see whether assumptions are met. Fig 2, shows the residual plot 

diagram exhibiting the fits and the experimental observation for the attribute, the compressive 

strength.

In practice, a balanced or nearly balanced design wi tha large number of  observations does not 

significantly affect the residuals (the difference between the observed and fitted response 

variables) if  departed moderately from a straight line or normality Myers et al. (2009). Hence, 

the normally distributed residual from the analysis is required for a balanced design. As shown 

in Figure 2, the residuals generally follow a straight-line pattern, hence no evidence of  non-

normality or unknown variables in the model. As observed, there is no significant defection 

Source  Sum of Squares  df  Mean Square F-value p-value

Model

 
479.48

 
13

 
36.88 288.97 < 0.0001

A-Metabent

 

43.12

 

1

 

43.12 337.84 < 0.0001

B-Alkali Doss

 

1.58

 

1

 

1.58 12.41 0.0006

AB

 

19.74

 

1

 

19.74 154.66 < 0.0001

A²

 

35.17

 

1

 

35.17 275.57 < 0.0001

B²

 

0.2708

 

1

 

0.2708 2.12 0.1475

A²B

 

9.26

 

1

 

9.26 72.56 < 0.0001

AB²

 

9.77

 

1

 

9.77 76.56 < 0.0001

A³

 

17.57

 

1

 

17.57 137.65 < 0.0001

B³

 

0.2700

 

1

 

0.2700 2.12 0.1481

A²B²

 

5.58

 

1

 

5.58 43.71 < 0.0001

A³B 10.45 1 10.45 81.91 < 0.0001

A⁴ 20.64 1 20.64 161.72 < 0.0001

B⁴ 2.19 1 2.19 17.15 < 0.0001

Residual 17.36 136 0.1276

Pure Error 0.0000 125 0.0000

Cor Total 496.84 149
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from the normal probability line and can be fairly conclude that the assumption of  normality 

is satisfied. Furthermore, in a designed experiment, the order of  observations affects the 

response variable if  the residuals fluctuate in a random pattern around the center line Myers et 

al., (2009). The result versus order for the response variable, as shown in Figure 3, exhibited a 

randomly scattered pattern about zero, hence no evidence of  the correlation among the error 

terms.

Figure 2: Normal probability plot of  Cr (MPa).� Figure 3: Residual versus order plot.

Establishment of desirable response value and operating conditions

Operating conditions of B and A on the compressive strength

Figure 4 shows the compressive strength with the binder ratio (metabentonite substitute (%)) 

and alkaline liquid-to-binder proportions (%) following the model equation. 

BothNa Si O/NaOH ratio of  1.5:1 and curing time were kept constant. Figure 4 illustrates the 2 3

visualized effect of  both B and A on both 2D contour lines of  the binder.

According to Figure 4, the optimum compressive strength of  26.1722 (MPa) was attributed to 

the lower metabentonite of  about 24.9558% and alkaline dosage of  56.9628 % at a 

constantNa2Si3O/NaOH ratio on 28 days curing period. 

Figure 4: Interaction between B and A on the maximized compressive strength (MPa).
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However, any change in the contours values alters the color and shape patterns of  the 

continuous variables. As shown in Figure 5, the red area indicates the contour, which yields 

the highest compressive strength (26.1722 MPa). Therefore, the resistance of  the GP concrete 

product against compression under the applied load can be optimized at target compressive 

strength of  25 MPa with the corresponding continuous variables of  around 25% and 84% for 

A and B respectively.

Figure 5: Interaction between B and A on the target compressive strength (25 MPa).

Relationship between experimental and Optimized Compressive Strengths
Through the fitted linear regression equation, the relationship between the optimized 
compressive strength and experimental compressive strength is given in Figure 7. The results 
indicated that there was a strong correlation between the optimized compressive and 

2
experimental compressive strength. The coefficient of  determination (R ) also demonstrated 
that the model was 96.51% it to predicting the relationship between optimized compressive 
and experimental compressive strength at both 95% confidence and predictive intervals. 
Furthermore, the standard distance (S) of  the response demonstrated that the data values were 
concentrated on the regression line; hence, the data values fitted the regression line, and the 
model equation could significantly predict the response Oyebisi et al., (2021).

Figure 7: Relationship between Optimized and Experimental CP12M1.5.
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FTIR Analysis
The FTIR spectra of  Metabentonite and Metakaolin Blended GPC are shown in Fig. 8. 

-1Similar trends in the FTIR spectra, with a broad band around 3265 cm  can be attributed to the 
-1

-OH stretching vibration Ji & Pei, (2020), and the broadband around 1640 cm  can be 
attributed to the H-O-H bending vibration Opiso et al., (2021)., which is due to the adsorption 
of  H O molecules on the surface of  the geopolymer and in the internal cavities Xia et 2

-1 -1al.,(2019). The strong absorption peak in the broad band around 1397 cm and 872 cm  are 
caused by the stretching vibration of  the O-C-O bond in carbonates Jin et al., (2016), 
indicating the reaction of  Ca (OH)  and CO to form CaCO  or the presence of  unreacted 2 2 3

-1
carbonates. The broad band around 984 cm  can be assigned to the asymmetric stretching 
vibration due to Si-O-X (X = Si or Al), and these bonds are geopolymer gel formed as the result 
of  activation, indicating that Metabentonite and Metakaolin Blended GPC were successfully 
synthesized (Ji & Pei, 2019: Liew et al., 2012). It should be noted that Metabentonite and 
Metakaolin Blended GPC has a strong absorption peak indicating a higher degree of  
geopolymerization, which provides support for the high compressive strength and 
immobilization efficiency. Moreover, some studies have also shown that Si-O-Si or Si-O-Al 
may shift to nonbridging oxygen (Si-O-Na+, Al-O-Na+) resulted from the reaction of  

2+ 2+ +
alumino-silicates with alkali, and that Pb  can undergo ion exchange with Ca  or Na (El-

-1Eswed et al., 2017:. Zhao et al., 2019). The broad band around 711.9 cm  is caused by the 
symmetric stretching vibration of  Si-O-Al and Al-O-Si Park et al., (2018).

Figure 8: FTIR Spectra of  Metabentonite and Metakaolin Blended GPC

Conclusions

This work evaluated the compressive strength of  the metakaolin-based GPC modified by 

metabentonite. The metabentonite incorporated results were compared with those of  the 

control samples metakaolin-based GPC. In this study, while the compressive strength was 

maximized, the mix proportion properties were in range. Therefore, the following conclusions 

were made:

1. A geopolymer concrete has been successfully produced by using bentonite and kaolin. 

The DOE of  randomized block factorial design was performed using RSM and 

mathematical model was developed. Its characterization using FTIR showed that the 

alumino-silicate structure was formed in all prepared samples.

2. The compressive strength CP12M1.5 of  metabentonite-metakaolin based 

geopolymer are directly proportional to the metabentonite substitution and alkali doss 
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percentage. CP12M1.5 showed maximum compressive strength due to effects of  

combined variables.

3. However, the effects of  combined variables have been studied and optimized using the 

RSM technique. Geopolymer concrete with approximately 25 %metabentonite and 

57 % alkaline dosage exhibits maximum compressive strength CP12M1.5 of  26 
2 

N/mm and optimum proportion of  25 % metabentonite and 84 % alkaline dosage 
2

was exhibited at target compressive strengthCP12M1.5 of  25 N/mm at 28days 

constant curing periods.
24. Based on optimization studies, the coefficient of  correlation (R ) obtained was 96.51% 

at the optimum formulation (desirability value = 90.47%).
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