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Abstract

Data compression algorithms are designed to maximize storage space and bandwidth in
transmission via data communication channels of limited bandwidth. Currently, most of our
communications or business transactions are now done using some form of network or the
internet, it is therefore essentially relevant to ensure data security and integrity across noisy
communication channels or less reliable storage devices. This can be achieved by an efficient
data compression, encryption, and error detection and correction scheme. Error detection
involves the sending of additional data or information to detect and reject incorrect data
whileserror correction involves theaddition of data orinformation to allow for correctionand
acceptance of data. Several error detection and correction schemes exist. In Residue Number
System (RNS), most error detection and correction schemes involves the use of additional
moduli termed redundant moduli, for error detection and correction. In this paper, RNS has
been applied to the Lempel-Ziv-Welch (LZW) data compression algorithm using the moduli
set {2' - 1,2", 2"+ 1, 2" - 1}, resulting in a new LZW-RNS compression and encryption
scheme. Two redundant moduli, {2 -3} and {2”" + 1}areadded to detect and correct errors in
encrypted and compressed data as applied in Redundant Residue Number System (RRNS).
The proposed scheme also allows for four bit stream residual archiving or transmission of
data. The encoder and decoder pairs have also been constrained to work for only even n
numbers, as an additional security measure. Implementation in MatLab reveals that the
secured fault-tolerant scheme performs better in detecting and correcting errors than the
LZW algorithmand other known ssimilarstate of theartschemes.
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Background to the Study

Residue Number System (RNS) usage continues to gain popularity as a result of the fact thata
great deal of computing now takes place in embedded processors. Computer chips are also
now dense that full testing is cumbersome and laborious or impossible, hence the need for
fault toleranceand enhancement in computational integrity of digital devices (Pahami, 2000;
Omondiand Pumkumar, 2007and Lu, 2004).

Data compression is the process of converting an input data stream into another data stream
that has a smaller size (Mahoney, 2012). Various compression algorithms exist for
compressing different types of file formats including text, image, sound, video or a
combination of these. These algorithms are either classified as lossy or lossless, and
dictionary or non-dictionary based depending on the nature of the output fora specific input
(Jane and Trivedi, 2014 and Shammugasundaram and Lourdusamy, 2012).In improving the
security, transmission, and storage efficiencies of various algorithms, RNS has been
efficientlyapplied (Alhassan, Gbolagade and Bankas, 2015).

Alhassan, Saeed, and Agbedemnab (2015) proposed a scheme for improving the efficiency of
the Huffman's method of data encoding where the frequency of occurrences of each character
are used to generate binary codes to reduce data size and enhance security. There exista lot of
literature on improving the Lempel-Ziv-Welch (LZW) algorithm. Alhassan, Gbolagade, and
Bankas (2015) also applied RNS using the traditional moduliset {2" -1, 2", 2" + 1} to propose a
novel LZW-RNS compression scheme which showed better performance than the
traditional lossless dictionary based LZW algorithm in terms of improved compression
efficiency, security, and speed of execution. Kaur and Verma(2012), modified the LZW data
compression algorithm as Content-based Addressable Memory (CAM) array which utilizes
less bits than its ASCII code.Welch (1984) and Rodeh, Pratt, and Even (1981) summarily
stated that data stored on disk or tapes or transferred over communication media in
commercial computer systems generally contains significant redundancy. The research also
proposed a new scheme whose principle is not found in general commercial compression
methods.

Shammugasundaram and Lourdusamy, (2012) presented a comparative study of text
compression algorithms where the LZW is found to be the least performing in terms of bits
percompression (BPC). Mahyar (2012) noticed that building 3G using KASUMI block cipher
to perform better than 2G and 2.5G networks is error prone which was dealt with by using
Redundant Residue Number System (RRNS) that has inherent error correction capabilities.
A method premised on modulus projection approach where the algorithm reduces
considerably the computation overhead for RRNS codes decoding was proposed (Amusaand
Nwoye, 2012).Data compression is very essential, and defined as a method or encoding
technique which reduces data size substantially based on an existing law, of which important
applications in storage systems and communication networks should be highly secured
(Mahoney, 2012; Welch, 1984, and Rodeh, Pratt,and Even, 1981).

Barati, Dehgan, and Movaghar (2008), applied RRNS to data distribution for mobile systems
and wireless networks based on peer-to-peer protocol. It error detection and correction
capability was used together with multi-level RNS to propose a new scheme which showed
better performance.
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In this paper, Residue Number System (RNS) is utilized with the moduliset {2" -1, 2", 2" +1,
2" -~ 1} to the Lempel-Ziv-Welch (LZW) algorithm resulting in new efficient LZW-RNS
scheme. Two redundant moduli, {2 - 3} and {2”" + 1} are employed in order to detect and
correcterrors in the compressed and encrypted data.

The rest of the paper is organized into four sections. Section II involves the presentation of
materials and methods such as the LZ family of algorithms, proposed algorithm, RNS and
RNS conversion processes. Presentation of results and findings including the proposed
encoder and decoder, performance analysis and implementation is in Section II1. In Section
IV, relevant conclusions are drawn from the findings whiles Section V entails the extension for
futureresearch.

Materialsand Methods

Generally, compression algorithms are categorized into non-dictionary or dictionary-based,
and lossy or lossless. Lossless compression algorithms allow for decoding back the original
data whiles loss compression algorithms allows for an approximation of the original data
(Mahoney, 2012, and Lempel and Ziv;1977,1987). The Lempel-Ziv compression algorithm isan
adaptive coding scheme where the words of the source alphabet are dynamically defined as the
encoding is performed, and it is the basis for the UNIX utility compress. The LZ compression
algorithm is a family of compression algorithms that was presented by Abraham Lempel and
Jacob Ziv in their landmark papers in 1977 and 1978 respectively (Shammugasundaram and
Lourdusamy, 2012; Zivand Lempel, 1977,1978).

LZW Compression Algorithm

The LZW algorithm isan improved lossless dictionary-based compression algorithm that was
published by Welch in 1984. The research improved on the existed algorithm that was
published by Zivand Lempel in 1978. It is simple to implement, and has the potential for very
high throughput in hardware implementations (Shammugasundaram and Lourdusamy, 2011,
and Lempel and Ziv,1977,1978).

Residue Number System (RNS)

Therepresentation of numbers with remainders otherwise knownas RNS is defined by a basis
consisting of a set of relatively prime numbers, called moduli {m, m, m, ... m,}, where the
greatest common divisor (gcd) between any two moduli is one, that is ged (m, m) =
1,¥i = j. Aninteger X is represented by n-tuple (r,r,, ..., r,) in RNS where theresiduer, = | X]|,,
fori=1,2, ..., kand |X],, is defined as X mod m,. The Dynamic range of the RNS is given by M =
I1"._,m. Applying the Chinese Remainder Theorem (CRT), an integer X be calculated from its
residuedigits (r,,,, ..., r,) as follows;

(1

.. M = . e .

Where; M =[5, mi, Mi = - and M ! is the multiplicative inverse of M, with respect to m,
i .

(Mohanand Preekumar, 2007; Pahami, 2000, and Lu, 2004)
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Redundant Residue Number System (RRNS)

RNS is primarily used for high-speed digital signal processing due to the modular carry free
arithmetic operations. It is defined by a set of relatively prime integers (my, m,, ..., m,,) called
non-redundant moduli. Error detection and correction properties are introduced by addition of
redundant moduli. Thus RNS is defined by the moduli set (my, my,...,m,, Mysy, Mpsy  My).
Both the non-redundant and redundant moduli should be relatively prime and should satisfy the
condition (mi, Mmy,.., My, ) = (m,,ﬂ,mnum_mk). The total dynamic range of RRNS is given
byMr = [T}y m;. This total range [0, My] is divided into two adjacent intervals in the ranges
defined by the non-redundant and redundant moduli. The interval [0, M) is termed the legitimate
range where M= [[I-; m; and the interval [M, M;) is termed the illegitimate range. The error
detection and correction demands that we constrain the information within the legitimate
range(Lu, 2004; Pahami, 2000, and Yang and Hanzo, 2001).

The Conversion Process

Convertors are used to change from one number representation to the other. A forward convertor
converts from Decimal to RNS (D/R), and the reverse convertor converts from RNS to Decimal
(R/D) representation respectively (Omondi and Preemkumar, 2007; Pahami, 2000, and Mohan
and Preemkumar, 2007).

Forward Conversion Process for the Moduli Set {27 — 1, 27, 27 +1, 27%1 -1}

The encoder pair is designed using the LZW-RNS scheme and the forward convertor to convert
from binary/decimal to residue as follows (Bankas and Gbolagade, 2012; Gbolagade, Voicu, and
Cotofana, 2010, and Mohan and Preemkumar, 2007);

Given the Moduli set {27,2" — 1,2" + 1, 2"*1 — 1}where m, = 2" my,=2"—-1m3=2"+1, and
my =2"*"1 — 1, Let mg = 22" — 3, and mg = 22" + 1, be redundant moduli for the purpose of
detecting and correcting errors in the decoding process as well as securing data. The moduli set
therefore is a combination of both the redundant and non-redundant {27,2” —1,2" + 1,27%1 —

1,22 — 3,22" 4+ 1} with a corresponding residue set{r;, 7,73, 74, 75,76}, 11,1 = {1,2,3,4,5, 6}.

Forward Conversion Process

For the given moduli set, any binary number X is represented as a 4n — bit number as;

X = Xgn-1X4n-2 - X1Xg (3)

Sincer; = |X|,n, i =1,2,3,4,5,6, ther;"s are computed as follows:

R = Xp-1¥p-2.-X1Xp (4)

Which is the n — least significant bit of any number X.

In order to compute the remaining r;s, the number X is partitioned into 4n-bit blocks as follows:

4n-1 3n—1 2n-1 n—1
B1 = Z szj_an,Bz = Z szj-2" ,Bg = Z szj-naﬂd 34 =ZIJZJ (5)

Jj=3n Jj=2n j=n Jj=0

which implies;

X =23"B, +22"B, +2"B, +B,  (6)

Therefore,

r, =|23"B, +22"B, + 2"B; + By|n_4

=|By + By + B3 + Bylany (7)

= |23“31 + 22"32 + 2“33 + B4|2ﬂ+1

= |—B1 + Bz - B3 + B4|2ﬂ+1 (8)
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and
3= |23“81 + 22"32 + 2"33 + B4|2ﬂ+1_1
- |2"'231 + 2"_132 + 2”33 + BQI2ﬂ+1_1

Similarly, the redundant residues r; and r; are computed as follows:

s = |23ﬂ31 + 22"'32 + 2"33 + B.‘lzzu_:,.

= |27*1B, + 2B, + 2B, + B, + 2"Bs + Byl an_s (10)
and

e = |237By + 22"B, 4 2"B3 + By|y2nyy

=|-2"By — By + 2"B3 + Bylyznyy (n)

Implementation
Equations (g) - (11) can further be simplified as;
= |2ﬂ_281 + 2”_132 + C|2ﬂ+:l._1 (12)
5= |2n+181 + 282 +C+ Dlzzﬂ_3 (13)
and,
Te =|—2"By — By +Clnyy (14)
Where;
n—-bit n—bit

C= 2"53 + 84 — 83'5_183’,_2 33,183,0 00..0+00..0 B4,ﬂ—134,n—2 34‘0

n-bit n-bit
= B3n-1B3n-2 -.B3,1B30 W Byn-1B4n—2 ... B41Bsp
n-bit n—bit
= B3n-1B3n-2 - B31B30B3n-1Bsn-2 .- B41Bsp
2n—bit

and,

D= 2"31 + Bz = 31‘,1_131,"_231‘181‘0 00..0+00..0 Bz,n-isz,n-ZBZ,iBZ,O

n-bit n-bit
= Byn-1B1n-2B11B10 W By n—1B2 02821829
n—bit n—bit
= By n-1B1,n-2B11B1,0B2n-1B2n-2B821B2¢ (16)
Zn-bit

Architecture

The architecture for computation of the residues is realized through (6) - (8) and (12) - (16). It
begins with an Operands Preparation Unit (OPPU) which prepares the operands by simply
manipulating the routing of the bits of the number X into the four blocks. Equations (15) and (16)
involve the joining of bits which do not require any hardware. The computation of ; does not
also require any hardware since it is the (n — 1)-bit least significant bit of the numper X. The rest
of the process requires regular Carry Save Adders (CSAs) and regular Carry Propagate Adders
(CPAs) which takes inputs from the CSAs. CSAs take in three inputs whilst the CPAs take in two

inputs. The schematic diagrams for the proposed forward converter are as follows:
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Figure1.3: Forward Convertor (RRNS)

Numerical Illustrations

Example 11: Given the moduli set {2",2" —1,2" +1,2"*1 -1} and {2" -1, 2" +1} as
redundant moduli; take n =2 and consider X representing a character of a message to be
encoded with ASCII character representation X = 25. Then, the conversion or residue set
{r;.}i=12._¢ is obtained as follows;

25 4ecimar = 000110014, giving blocksB; = 00, B, = 01, B; = 10, and B, = 01.
r, =n—LSB(00011001) = 01

7, = |By + B, + B3 + Bylyn_y = |00 + 01 + 10 + 01|, = 01

73 = | =By + By — By + Balangq = |—00 + 01 — 10 + 01494 = 000

Ty = |27"2B, + 2718, + 2"By + Byl ne1_y = |2°00 + 2101 + 2210 + 01]444
=100+ 010 + |1000|44; + 01l;35 = |00 + 010 + 001 + 01544 = 100

15 = |2"*1B, + 2"B, + 2B, + B, + 2"B3 + Bylymn_z =
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= (2300 + 2200 + 2101 + 01 + 2210 + 01};10;
= 10000 + 0000 + 010 + 01 + 1000 + 01],50, = 1100
Te = I_ani - Bz + 2"33 + B4|22ﬂ+1 = |2200 -01+ 2210 + 01'10001
= 10000 — 010 + 1000 + 01]5595; = 01000
Thus, the residue set {r};=1, ¢ is {01,01,000,100,1100,01000} which is equivalent to
{1,1,04, 12,8} in decimal.
That iS, |25|{2‘3'5‘7_13‘17] = {1, 1, 0, 4, 12, 8}.

Reverse Conversion Process for the Moduli Set {2 — 1, 2#, 2» +1, 271 -1}
The residue to binary conversion process is done using the Chinese Remainder Theorem (CRT)
according to equation (1) as follows;

Given any RNS number X, with a four residue combinations 7, ;, corresponding to any moduli
M, x> then the M;;,; and the Ml-},ﬁl can be computed accordingly and then substituted into the
CRT in equation (1) in order to get X in binary.

Example 1.2: Given any RNS number X = {r;, 13,13, 73} with respect to the moduli set {27,2" —
1,27 +1,2"*1 — 1} in the order m;,i = 1,2, 3, 4 respectively, we have;

M, = (21— 1)(2n —1), M,=2"(2"+1)(2"*1 —1), My = 2"(2" — 1)(2"*' —1), andM, =
2"(2" —1) (17)

Their multiplicative inverses are as follows:
M7, = 1M, = =1y, [M5Y], = |1=1lmandIM2 ), = 2772,
(18)

Thus, the RNS number can be converted back to binary as follows:
(1 -1)(22 -1y —2(* +1)(*2 - 1)y

Xi= =2n(2" — 1)(2"* — 1) |(—2" )y | ony,
+2"(22n - 1)' (2n_1)74|2“+*-1 2“"(2’"—1)(2“"’*—1)
(19)
Error Handling Mechanism

By employing the two redundant moduli {2” — 3Jand {2” +1}. In RRNS, a number represented
with original moduli set (with number of moduli) can still be represented with the original chosen
moduli and redundant moduli ({ — )number of redundant moduli). The redundancy in the system
allows for the reconstruction of that number by using any combinations of the moduli at the
receiver and such RRNS (, )code has capability of simultaneously detecting s residue digit errors
and correcting t random residue digit errors, if and only if+ = (—) (Alhassan, Gbolagade, and
Bankas, 2015; Omondi and Preemkumar, 2007, and Yang and Hanzo, 2001).

Example 1.3: To show the use of the CRT to recover a number from its residue digits. The number
25 can be represented using the moduliset (4, 3, 5,and 7) as (1,1, o, 4). To convert (1, 1, 0, 4) back

to a decimal representation, the CRT is applied as follows: M =4x3x5x7 =420
= %= (105, 140, 84, 60)

The multiplicative inverses are obtained as follows:
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|105|, =1, | 1], =1, therefore,* =1
140|;=2, | 2x2 |, therefore ,™ =2
84| 5=4.1(4 X 4)|; =1, therefore ;™ = 4
| 60|.=4.,1(4 x 2)|, =1, therefore ,™* = 2
Then using equation (1), can be obtained as
= [10s| x1) ||+ 10| @2x1)[5] 0 +|84] (4%0) || + |60 (2x4) [5] 4= | 105 +280
+0+60)|
= 445]s= =25

Example 1.4: This illustrates how a single error in the received residue digits is detected and
corrected by employing two redundant moduli. Consider two redundant moduli, namely13 and 17
in addition to the original moduli (4, 3, 5, 7) which gives the new moduli set (4, 3, 5, 7,13, and 17).
Now, consider the ASCII integer message with representation = 25, then the respective residue
digits are (1, 1, 0, 4,12, §). Assume that the ; digit is in error (ie. {1, 1, 2, 4,12, 8}). According to
CRT, the integer X in the range (o, 210) can be recovered by invoking any four moduli and their
corresponding residue digits, if no errors occurred in the received RNS representation.

The integer X represented as (1, 1, 2/, 4, 12, 8) is recovered by considering all possible cases. Once
all the possible combinations of four out of six residue digits are retained, it results in:

(x,z,_; ,4_) =0(,1,724) 34— 277

(1,2,3,5) =Q,1,2, 12) - X1235 =547

(n 73 76) = (0,1, 2, 8) - Xy236 =337
(n rare 1) = (1,1, 4,12) - Xy245 = 25

(. ra7e,76) = (1,1, 4, 8) - Xy246 =25

(n ,r3m,15) = (1, 2, 4,12) - Xj345= 417
(n rms,16) = (1, 2, 4, 8) - Xyz46 = 7350
(n mms,me) =(1, 4,12, 8) - Xjg5¢ =25
(e 75) = (1, 2, 4,12) - Xp345=1327
(rp r3,18,76) =1, 2, 4, 8) - X346 =5045
(r2, 175 76) = (1, 4,12, 8) - X345¢ =25
(r3 ra7s 76) = (2, 4,12, 8) - X345 <1782

WhereX; ;;, represents the recovered result by using moduli {m; m;m, m;} as well as their
corresponding residue digits {x; x; x; x;}.

Notice from these results that X535, X136, X2345, X2346, and X345 are all illegitimate numbers,
since their values are out of the legitimate range [o, 410].

In the remaining seven cases, all the results are same and equal to 25, except for X534, X236, and
X1345. Moreover, all these results were recovered from four moduli without including mj, that is
from Xy545,X1246 . X1456, and X,45¢ which are equal to 25 Hence, we can conclude that the correct
result is 25 and that there was an error inr3, which can be corrected by computing

3= I 25 | s=0

Results and Discussions

The proposed scheme consists of a modified encoder and decoder pair with enhanced
compression ratio, speed, security, and error detection and correction capability. Residue Number
System (RNS) is applied to the ASCII character with decimal representation X which is used in the
compression and encryption process using the LZW-RNS four moduli scheme. The encoder and
decoder pair is then modified to work for only even n numbers for enhanced security and to
detect and correct errors using RRNS.
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The Proposed Encoder and Decoder

The initial dictionary with single character codes in decimals is created and then converted into
its residues in a process termed as forward conversion. The encoding process is continued with
the modified algorithm in residues. The compressed or encoded message is then transmitted in
four bit stream channels or residuals in a particular secret order.

The secret order transmitted four bit stream channel message is received, reorganized by the
decoder pair and then converted to its decimal representations through a process known as
reverse conversion. The modified LZW decoding process continues until the original message is
acquired back.

A good and efficient data compression algorithm is measured based on its compression rate,
speed of execution, security, error detection and correction capability as well as its simplicity to
implement (Kinsner and Greenfield, 1901). The performance analysis of the LZW and RNS-LZW
proposed scheme is assessed based on these criteria.

Implementation of the Proposed LZW-RNS Error Handling Scheme

The error detection and correction performance analysis is done using MatLab. Given the non-
redundant moduli set {27 —1,27,27+ 1,2°%¥1 —1} and redundant moduli {22® — 3,227 +
1 Jresulting in the moduli set {27 —1,27,27 +1,27*1 — 1,227 — 3,227 4 1}for the purposes of
error detection and correction.

Example 1.5: This is an illustrative example to demonstrate how a single error is detected and
corrected. Consider the word “Encoding” to be encoded and decoded using the LZW-RNS
scheme, and then detect and correct errors using RRNS as follows;

For n = 2, the respective moduli set is {3, 4, 5, 7, 13, 17}, resulting in respective residues for the
word “Encoding”;

resi=([o,2,0,0,1,0,2,1]);
res2=([1,2,3,3,0,1,2,4]);
res3 = ([4: 9,410,0,0, 3])7
res4 = ([6: 51 67 2,0,5, 5])7
res5=([4,6,8,7,9,1,6,12]);
res6=([1,8,14,9,15,3,8,1]);

Any possible six out of four combinations or permutations of encoding and decoding using the
LZW-RNSschemeresultsin the table below;
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Table1.1: Encoded and Decoded Results for Error Detection and Correction

Iteration(s) | Word to Encode, Decode and Check Decoded
Errors Word
Eln |¢ o |d |i n |g
1234 69 110 |99 | 111 | 100 | 105 | 110 | 208 | EncodinD
1235 69 110 | 99 | 111 | 100 | 105 | 110 | 688 | Encodin—
1236 |69 110 |99 111|100 | 105 | 110 | 868 | Encodin—
1245 69 110 | 99 | 111 | 100 | 105 | 110 | 376 | Encodin¥
1246 69 110 |99 | 111 [ 100 | 105 110 | 460 | Encodin—
1256 69 110 |99 | 111 [ 100 | 105 | 110 | 2092 | Encodin—
1345 69 110 | 99 | 111 | 100 | 105 | 110 | 103 | Encoding
1346 69 110 | 99 | 111 | 100 | 105 | 110 | 103 | Encoding
1356 69 110 |99 | 111 | 100 | 105 | 110 | 103 | Encoding
1345 69 110 | 99 | 111 | 100 | 105 | 110 | 1468 | Encodin—
1346 |69 110 | 99 111 | 100 | 105 | 110 | 1888 | Encodin— |
2456 69 110 | 99 | 111 | 100 | 105 | 110 | 4744 | Encodin—
3456 |69 110 |99 111|100 [ 105 | 110 | 103 | Encoding |

From Table 1.1, notice that 103 corresponding to possible combinations ({3, 3, 4, 5}, {1, 3, 4, 6},
{1, 3, 5, 6}, {3, 4, 5, 6}) appears most, within the [o, 210) legitimate dynamic range, and 256
ASCII characterrange.

Then, the missing moduli in the combination giving the most appearing message
corresponding to position two (2) is modulo four (|4|). Hence, the residue of |103| =3, is
computed and the residue {3} substituted into the last residue position of “res2” as ([1, 2, 3, 3,
0,1,2,3])instead of ([1, 2, 3,3, 0, 1, 2, 4]). The message can thus be decoded correctly using the
combination |1,2,3,4| without the redundant moduli. Finally, the correct recovered word is
“Encoding”.

Performance Analysis of the Proposed Scheme

The purpose of data compression is to reduce data size, enhance speed of transmission, and
security. The gain in this research in terms of security and efficiency are enormous. Amongst
others, one of the inherent properties of RNS is the reduced magnitude of computation
involving the use of residues that speeds up compression. Total assess to entire network is
required before hacking can be done because of the secrete order bit stream compartmental
transmission.

Conclusion

The moduliset{2"+1,2", 2" -1,2™" - 1} has been carefully chosen to assess the impact of moduli
choice on the performance of the LZW algorithm, and to enhance securityand encryption by
constraining both the encoder and decoder pair to work for even n numbers. Encoder and
Decoder pair has been designed using RNS for compression and encryption. The output of
the LZW algorithm has also been modified to allow for secret order bit stream residual
storage or transmission of data which enhances the security as well as bits
requirement/reduction for transmission. It is also high in security because of the larger
channel that will have to be hacked. Redundant moduli has been added for error detection
and correction.
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Finally, RNS has been successfully applied to the LZW algorithm leading to new LZW-RNS
data compression and encryption scheme that is efficient in terms of execution speed, bits
per compression, and security. Fault-tolerant schemes using RRNS which involves addition
of extra moduli for the purposes of error detection and correction for either data in storage or
transit has also been proposed and presented which shows better performance than the
traditional LZW algorithmand other known state of theartrelated schemes.

Future Research Work

The proposed system is efficient in terms of security, compression efficiency, and speed of
execution, as well as fault tolerance than the traditional LZW compression algorithm.
Further research is to ensure multiple error detection and correction, hardware
implementation, as well as the implementation of other number systems in data
compression.
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