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Abstract

new formula called 2-point diagonally implicit
super class of BBDF with two off-step points
(20DISBBDF) for solving stiff IVPs is formulated.
The method approximates two solutions with two off-step
points simultaneously at each iteration. By varying a
parameter p E (-1,1) in the formula, different sets of
formulae can be generated. A specific choice of p =% is
madeand it was shown that the method is both zeroand A-
stable. A comparison between the new method and the
existing 2-point block backward differentiation formula
with off-step points (20BBDF) is made. The results show
that the new method outperformed existing 20BBDF
method in termsof accuracy.
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Background to the Study
Considerasystem of first orderstiff initial value problems (IVPs) of the form:

¥ =fi(x¥), i=1 2,.,n ()

With¥(a) = #, in the intervala = x < bwhere ¥ = (vy,3, ¥4 ..., ¥.) andijf = (4, 1% ..., n5).

System (1) is said to be stiff if it contains widely varying time scales, i.e., some components of
the solution decay much more rapidly than others. Most realistic stiff systems do not have
analytical solutions so that a numerical procedure must be used. Stiff ODEs occur in many
fields of engineering and physical sciences such as electrical circuits, vibrations, chemical
reactions, kineticsetc.

Developing methods for solving stiff problems remains a challenge in modern numerical
analysis. Curtiss and Hirschfelder (1952) discover Backward Differentiation Formula (BDF).
Since then most of the improvements in the class of linear multistep methods have been
based on BDF because of its special properties. Ibrahim (2007) introduced r-point block
BDF (BBDF). Super class of block BDF, which is both zero and A-stable, was developed by
Suleiman (2014). The method is derived from 2-point block BDF and outperformed both
2BBDFand 1BDF intermsofaccuracy.

Inorderto gain an efficient numerical approximation in terms of accuracy and computational
time, a super class of diagonally implicit BBDF method can be considered. The study of
diagonally implicit for multistep attracted some researchers such Ababneh (2009),
Alexander (1977), Musa (2016) and Zawawi (2012). Abasi (2014) developed a 2-point Block
BDF Method with off-step points for solving Stiff ODEs which differs from all the methods
above because it calculates two solution values with off-step points simultaneously at each
iteration. The motivation of this research is to develop a new method that would be called
diagonally implicitsuper class of BBDF with off-step points

Derivation

In this work, two solution values, y,. andy,,, and two off-step pointsy,, andy,, whichare
chosen at the points where the step size is halved, are formulated in a block simultaneously.
The formulae are computed using two back values y,  and y, with step size h. The formula is
derived with theaid of thisdiagram below:

Figure1:Pointsinvolved in 2-Point Super Class BBDF with off-step points method.
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Definition 2.1: the 2-point super class of block backward differentiation formula with off-
step pointsisdefined as

1+k L 3
. @y = Wy (Fask = o1, 1), k=i=3152 @)
7=0
Where k = i =3represents the first point, k = I = 1 represents the second point, k =i =2

represents the third pointand k = I =1 represents the fourth point. The formula (2) is derived
from Taylor's series expansion as follows:

Definition 2.2: Linear operator L, associated with first, second, third and fourth point
DI2SBBDF with off-step pointisdefined by

1
Lily(xp).hl: g iyn—1 + @y iyn + @z .y, 1 —hBy; (f’n+.f( -p ﬂH{_i) =0, k=i=3 (3)
2 2

2

Lily(xn) k] @gvnoa + @y + a3 ¥, 1+ @y ¥niq— hby, (fn T PfﬂH_E) =0,
2l "ty 2

k=i=1. (4)

Lily(xn) bl @ ¥n—q + @y v+ @z, 1+ @ Vpyg +as .y, s — hfy, (ﬁn+k - Pfﬂm_i) =0, k=i=
2 2 2 2 2
(5)

ra | wa

Lily(xn)hl: cpi¥n 1 + @319 + 2 Vnsd Tty Vne1 T 3 Vsl + a3 Vniz — hBy; (fn +k
pfﬂ+k_i) =0, k=i=2. (6)
2

Firstpoint: Toderive thefirst pointy,,, k=I=3and define the operatoras

@ 2Vn-1 toa oyt LS hﬁi% (fﬂ 27 Pfﬂ) . (7)

2 22 2
Expanding (7) as Taylorseriesabout x, and collecting like terms gives

CU w(xy) + Cl ih}"r(xnj + Cgihz}r"(xﬂj +-- (8)
E ‘2 z'z

Where

C1=a 1+ a,1+az1=0,

0 0z 13 33

1

Cii=-ajit-azi+Pii(p—1)=0, (g)

2 2 22 22
. 1 +1 11B o
1=—-& 1T—-az21— —-p11~= .
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. V1,021, . . . . .
The coefficient of “n+3" 37" is normalized to 1. Solving the simultaneously equation (9) for
the values of «j;'s and g, ,'s gives the formula for v, ,zas
* 2

1p+1 3p=3 3 3

= 1p2¥n-1Ty p—27n n T 4[p—2jphfﬂ T a(p-2)

hf, _% . (10)

Similar procedure is applied as in the derivation of first point to obtain the second, third
and fourth points as

1 p+1 2(3p+4) 8 p+8

4
Va1 = + ¥ 1+ ——ph n
Ynt1 T TRaaa?m 1T s M T 3apm1a M nel T gp0a” J'Irﬂ+— 2p- 14f”‘+1 (1)
1 p+3 5(p+5) 5(8p+15) 45 p+5 15 15
V42T 3 P2y — D), 4 2CeTE, e =y 41+ ——phfy, ———h L3
n+s 28p—61 8p—61 8p—61 “n+; 2 8p—61 8p—61 8p—61 n+;
(12)
Fﬂfzf 1845 4(16+5p) 9(12+5p) 4144+31 12
+ + + ] + | +
_Z [ Vo1 PV.n— C ) X € p'Vn+1—— Py . phf z—
5-54+5p° —54+5p” —5445p “m+S | —5445p - 5 —54+45p " n+; | —5445p° n+
12
—h ; 1
s (13)

For absolute stability of the method,p is Chosen to be in the interval (—1,1) as in Euleiman (2014).
By choosing p =% in equation (10), (11), (12) and (13) to obtain the 2-point diagonally implicit
super class of BBDF w‘ith off-step points as follows:

7 E 3
Y+l T Tpn- 1+20‘ ﬁhﬂ‘+_hf 3
11 50 280
Ynt1 = 13 Vn-17 7 Yn T g Vned hfm + hfn+1 :
3 13 21 207 3
Ypi2 = T ggn- 1+ 55— ) ﬂ+1+ ag 1T 4hfn+1+ﬁhfﬂ+§ , (14)
19 29 316 189 892 12 16
Vpeos = ——Vpe1 ——¥p+—¥ 1i——Vy1+—v z——hf z+—h .
nHZ 0057 67 " T 201 mty 67 -NFL TaasTnts 67 fn+§ g7 tfn+2

In matrix form, equation (14) can be written as
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1 0 0 0
280
- 1 Yail
141 597 0 0 Z
21 —_ 1 0 Yn+1
o 83 A
316 189 892 Yn+2
201 67 335
7 27
° ~3 20
3 9 f 3
11 50| Va3 00 0 —— -3
10 141 47 || ¥n-1 fo_1
~ = > ; 3 00O 0 0 n-3
o o n D0 0 0 £,
0 — o -
1005 67
3
. 0 0 0
16 el
12 pe] 0 0 ¢
-— +1
+h 47 9 i 0 fn . (15)
0 _4_ 11 n+z
. 12 16 | ‘a2
67 67

Definition 2.3: Method (15) is diagonally implicit if the matrix in its left hand side isan upper

triangular.

Orderofthe Method

This section derives the order of the method corresponding to the equations in (14). It can

be written in the following form

7 27
1t —Ypog ——
“n+s T ozp7 Tl gp-
11 L 50 280
e I e L
Al 149 M1 T grIm 149 T
3 13 21
v, 2t —¥p_1— =¥t
“n+s ' ogginTl gpm
19 ED 316
n+2 1pp5- -1 67"

2

0

H}’TH% T gg n+1 T

—Vp— o=V  1t—¥ — ¥ .=
o201 m+; 67 ML 33sTn4s

o ]
¥ = _Ehfﬂ—l_ghfﬂ'i'% f

12 16
——hf 1+—h
47 fﬂ+§+4? f’]‘t+1 '
! 2 hfpaq + —hf
a4 IMFL T 4y Vg

189 292

Equation (16) can be written as in matrix form as

12 16
—Ehfﬂ+§+ o7 sz
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o - 0 —— 1 0] oo
20 20w g 280 Vo1
11 50 - -—— 1 1
i 141 357 0 0O B+
0 141 47 ¥n-1 + 21 == 10 n+i
0 3 13 || ¥,_t o 88 V.2
— - Z Z
3139 2292 ¥n _ 316 189 592 B+
- g = 201 &7 335
1005 67
3
I'Ir|]| 0 0 _% fn_;ll
=hlo o0 o0 o f”'i
00 00 n-z
00 00 f,,;"
3
26 o)
1
n+=
12 18 o0 ¢ 2
+h| "7 Y, 3 o &) (17)
D -— 11 n+
44 .
12 16 | “n+2
'..\ o n o -= =
) 67 67
— = 1
0 251 0 5ED _ e E
T = 141 -
L'E.DD—( )_..D' = ;-41 JDE—(D);DH_ 415 .--D_-j,— E .:-DE— _% J-Dﬁ.:
— - 11
0 EE&: 0 2;2 _Zie g
_H F 201 &7
3
0 0 0 - B
0 0 0 - e
_Bs2 0
== .0 .0 0 0
0 0
i 0 .
6= li tand G- =| 0
- 16
44 1.2 -
0/ e

Definition 3.1: The order of the block method (14) and its associated linear operator L given

by

=1

Llyv(x); h] = Z[Dj} (x+; ) hG}-j.-"(x +j%)]1(18}

=0
Expanding the function y (x +j E) and its derivative y' (x + E) as Taylor series around x gives
h ()* UD®
y(x +72) = y() + 72y () + 2oy (x) + 22y (1) + -(20)

(i

y' x+i};) v+ F”(x}+—=—y”'(}+—2}—?“*(x}+ (20)
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Substituting (19) and (20) into (18) represents

7 N h 7
j=o =0

3!
G2 O
?z%y :;f! () +--] k
= Z D; [y(x)] %ZUD}- - 2G;]ny" (x) + %Z [ -2 jq,-] h2y"(x)
= £ -
k
+1Z[3|jaﬂ -2 I_j G]hﬁ ) e (21)
J=0

The difference operator (21) and the associated method (14) is considered of order pif E,=E, =
E=++E,=0andE,, #0

Inthiscase
7
E[,:ZD}-: 0. (22)
Fﬁ
El—ZUD 26)=0 . (23)
E, = Z(—; D,—2G)=0 . (24)
2V s
10 0
s = 2(3,; ~226)=| o |#(3] @
0
0 0
_=
10
Therefaore, the method (14) is of order 2, with error constantEy = g
0

The stablility p£operties of method (14) are discussed here. We begin by defining zero and A-
stability taken from Suleiman (2014)

Definition 4.1: A LMM is said to be zero stable if no root of the first characteristics
polynomial has modulus greater than oneand thatany root with modulusoneissimple.

Definition 4.2: A LMM is said to be A-stable if its stability region covers the entire negative

half-plane
The method (14) can be rewritten in matrix form as follows:
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1 0 0 0
_ 280 Vet
S 2 g Vn+t | _
P 88 }’n+§
_3e 185 2 L W
01 _ &7 335
0 —— o ¥ 3 0 0 0
20 20 ¥, = 00 0 -2 frn_z 5 st
Moy = 20 : 12 0 0 :
0 14% 1:;1-'? }:n—i +l0 0 00 fn—l +h _E 4?’9 3 fn+1 .
0 = o Yn-2 00 0 o0 [|fat 0 -2 7 9 || Fme
g8 22 . Y z (26)
0 2 g =) 00 007\ 0 0 -2 2/ \fi,
1005 &7 67 &7
Definition 4.3: Let Y,;; and F,; be vectors defined by
Y = [}?n+1J}:n+2J "'J}"n+r]r1,\,Fm = [fn+1an+2J vy frz+r]rr= 2, andn = 2m(see [8]).
Method (14) can be written in matrix form as follows:
AgYm=A1¥m-1 + MBoFn—1 + B1Fy) (27)
7 27
1 0 0 0 0 - 9 3 g
s 1 0 0 11 50 0 0 0 ~
141 S~ - 2
wheredg=| 22 -2 4 o |4 = 0 142 ¥ B,=|0 0 0 0 | B=
28 o _32 13
i1 - 0 = 00 0 O
_ 318 189 892 19 “Is 0 0 0O
w01 &7 33s 0 o 9 &
< 0 0 0 , , , . .
= 16 Vp-E }'Zm——z }2':?‘-"1—1:"1':—: }'n+—;
12 — 0 0 . ’ Tt 7.
e ¥ 3 Y,y }1::—1 _ }‘Em— 1L',m—1}+1 V. = }‘n+1
0 —-- 4. rom Yu-2 Yam-2 Yatm-p+2 |7 Ynet
= 2 ¥n "2m Valm-1)+2 Fn+z
o o -2 X : s :
87 &7
Y g+ fa-z fam-2 Fatm-14 f st fams
Yam+1 F _ fa-1 fam—1 _ fatm-1)41 F = fas1 fom+1
Va2 [T fn_;; me—“; £ ':m—l:"'_: o fn"';: f2m+§
Va2 Ja fam faim-1)+2 fasz fams2
Substituting scalar test equation y' =Xy (i=o, A complex) into (27) and using Ah=hgives
AgYp = A1 Yy g + h(BoYp_1 + By V). (28)
The stability polynomial of (14) is given by
Det[(4q — 7By )t — (4; + hBy)] = 0. (20)
ie
24874 6449 . | 49463 o— , 10734 —,, . , 1447 — 4304 —,
R(t,h) =t* ———t3+——t? t2h+ ———h?t? 3 R2t? +
B283 — 808 g, T3ms L o e 0 7T 230s (30)
h3t? — h3t?2 — ——h*t3 - ht* + h2t — h3t* + h*t*=0. 30
157450 15745 173155 173155 173195 173195 173195
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For zero stability, we set & = 0 in (30) to obtain

24874 5249 4
¢ MERa g, (3)

18425 183425

Solving equation (31) for t gives the following roots:
t=0,t=0,¢t=0350014andt = 1.(32)

From the definition 4.1, method (14) is zero-stable. The stability region of method (14) is
determined by substituting ¢ = ‘¢ and the lzraph is shown below:

g 4

-2 4

Figure 2: Stability Region of the 2-Point Super Class BBDF with off-step points.
From the definition 4.2, method (14) is A-stable

Implementation of the Method
Newton's iteration is used in implementing the method. The procedure is described as

follows. We begin by defining the error.

Definitions.1

Let y; and y(x;)be the approximate solution of (1)
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Then the absolute error is given by

(error)e = [(Ve)e — Or(x))e |- (33)
The maximum error is defined by

MAXE= max (mw{wan] r); (34)

1=isT 1=i=N

where T is the total number of steps and N is the number of equations.

Define from (14)

F-_;—}n+_+ hfn hfn+;;+ s-_; ,

;BI} 12 18
FF =y ——y .1+—hf 1——h + =
1 = ¥ns1 141}”+£ e f”‘*; e fat+1 1

21 207 5 3

Fi = }n+— 11 }?n.}i - E}?n+1 + 21 hfa+1 — 11 hfn.ﬁ + Ez : {35:'
3l& 185 852

F; = Yn+2 — 2[:,1,'!-',-,1.{_;"'5J'fn+1 - E}',ﬁ_ hfn+_ hfn+n + &4.
7 27 11 50 3 13

1‘\;"11&1'&5;; = ﬁ}’n—l - 5}"?:: £ = _E}n 1+ a7 Y EE = %}"n—l - E}"n and

19
2 1+ }n are the back values.
(i#1) . 1 , 3 . . .
Lety,.;  .J =317, 2 denote the (i + 1)th iterative values of y,,+; and define
(i+1) _ _(i#1) () . _ 1 . 3
l“?:l'z+_;l' - J"n+_:l' - -"!":"z+_;l"-'i -3 1’5’ 2. (3'53

Newton's iteration for the 2-point SBEDF with off-step point method takes the form:
i+l (i) 4 : 1 .3
;'qt-l-_;ujI - [ (}n-f}j] 1[F Dn:.}-}]: ]—_2,1,5,2. (3?)

This can be written as
Nty (i+1) (i 1.3
[F} (}':—H}'}] Cnsj =[5 D’?!‘l'i}] J=3 1’5’2' (38)

and in matrix form, equation (38) is equivalent to
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E‘f'h \
1—h2 ﬁz 0 0 0

= ; ) (1)
280 | 12 af.'lﬂ, __haf.'ll), 0 0 nt
141 473y 47 ayhi, (i+1)
ME fat1 | _
a0 [i+1)
a0 3 fn+ En+—5
21 5 foaE 1-—h—7F* 0 z
= 207 5 h M+ 11 gyt (i+1)
11 ~ o + - —ﬁa i ned et
3le ¥nta |L“| e n+2
_El}l E — 852 + IE|*ir'1+:‘. 1— haf'u:.‘.
\ E7 335 &7 By ‘5 &7 _Ta}‘lll-‘-z}
4z
Ly ()
- 0 0 0 }.n+‘= 5 f -2 E1
280 - z =
P 0 0 ~'?"3' 000 5 £l )
21 207 ntl 10 0 0 0 n-1 4 | =1 (39)
- _1 (i) |z::| E= 30
i1 =8 sz O [|V,.= 00 0 0/|f . z
316 183 — -1 nio 00 0 O n—= o
- 335 - . 2
201 &7 L) f"t}
n+¢ n

Tested Problems
To validate the efficiency of the methods developed, the following stiff IVPs are solved:
135 = —20y; — 19y, 31 (0) = 2, 0=x =20,

y; = —19y; — 20y, 1 (0) = 0.

Exact solutions:y, (x) = 7 3% 4 g%
ya(x) = 3% — g%

Eigen values: -1 and -39 Source: Musa (2015)
2. =198y, + 199y,7,(0) =1, 0=x =10
v, = —398y; — 399y,y,(0) =

Exact solution: y (x) = e

ya() = -

Eigen values: -1 and -200 Source: Ibrahim (2007).

3.v' = 20y + 205inx + cosx, y(0) =1, 0D=x=2,
Exact Soltion: y(x) = sinx + 2% Source: Abasi (2014)

4.y =—100(yv —x) +1, y(0) =1, 0= x =10,

Exact Solution: y(x) = e™1%% + x Source: Abasi (2014)
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Numerical Results

The numerical results for the test problems given in section 6 are tabulated. The problemsare
solved with 20BBDF and 20DISBBDF methods. The number of step taken to complete
integration and maximum error for the different methods is presented and compared in the
tables below. In addition, the graph of Log,, (MAXE) against h for each problem is plotted
(figure 2 - 5) in order to give the visual impact on the performance of the method.The
notationsused inthe tablesare listed below:

The following abbreviations are used in the tables:

20DISBBDF =2-point super class BBDF with off-step points

20OBBDF
h

=2-point block BDF method with off-step points of order 5

=step size

NS=total numberof'steps
MAXE=maximum error
Time=computational timeinseconds

Table 1: Numerical Results for Problems1, 2,3and 4

n Method NS MAXE Time
1. 982 | 20BBDF 1000 7.00088e-002 2.15117e-003
20DISBBDF 1000 3.81561€-002 1.73800e-001
98" * | 20BBDF 100000 2.84492€-003 2.06491e-001
20DISBBDF 100000 1.64714€-005 2.01139€+000
98 ¢ | 20BBDF 10000000 2.87417€-005 6.00132€+001
20DISBBDF 10000000 1.70657€e-009 1.19700€+002
2. 98 2 20BBDF 500 7.17251€-003 1.40432€-003
20DISBBDF 500 1.03577€-004 1.68700€-001
98" * | 20BBDF 50000 7.355064€-005 1.41352€-001
20DISBBDF 50000 112034€-008 1.13470€+000
98 ¢ | 20BBDF 5000000 7.35775€-007 2.41100€ +000
20DISBBDF 5000000 1.96752e-010 9.01800e+001
3. 98 2 | 20BBDF 100 8.05923e-002 5.90201€e-004
20ODISBBDF 100 1.86882e-002 1.18580e-001
98" * | 20BBDF 10000 1.46355€e-003 2.01000€-002
20ODISBBDF 10000 4.39784€-006 5.03090e-001
98 ¢ | 20BBDF 100000 1.47126e-005 2.98923e+000
20DISBBDF 100000 4.48628e-010 3.76200€e+001
4. 98 %2 | 20BBDF 500 1.95750€-002 3.08300€e-003
20DISBBDF 500 2.62911€e-002 1.99800€e-001
98" * | 20BBDF 50000 7.16455€e-003 5.92900€-002
20ODISBBDF 50000 1.03577€-004 1.38300€e+000
98 ¢ | 20BBDF 5000000 7.35564€-005 9.91000€+000
20DISBBDF 5000000 112034e-008 1.15600€e+002
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To give the visual impact on the performance of the method, the graphs of Graph of Log,,

(MAXE) against h for the problems tested are plotted. Given bellow are the graphs of the
scaled maximum errorarranged problem by problem.

7t -+ 20DISBBDF | |
i —m—20BB0F |+
_g*;- --l_ﬁ r4 L Illllll_a ..._z
10 10 10 10 10
h
Figure3: GraphofLog, (MAXE) against h for Problem1

13

(11}
g
=
(=]
::
P o e ¢-++ 20DISBBDF ||
_9_ ------------------------------ . EOBBDF ~
—10*: — ......|5 — F—l Hla 2
10 10 10 10 10
h

[11]

z

=

(=]

g
o - e 20DISBBDF |
4L —l— 20BBDF T
10" 1w° w* 1w W’

h

Figure 6: Graphot Log,,(MAXE) against h for Problem 4
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From the table 1above it can be seen that 20DISBBDF method outperformed 20BBDF
method in terms of accuracy. The graphs also show that the scaled errors for the
20DISBBDF method are smallerwhen compared with thatin20 BBDF method.

Conclusionand Recommendation

A new method of order 2 that is suitable for solving stiff initial value problems has been
developed. The stability analysis has shown that the method is both zero and A-stable.
Accuracy and the execution time of the derived method are compared with the existing 2-
point block backward differentiation formula with off-step points (20BBDF). This
comparison shows that the new method outperformed the existing 20BBDF method in
terms of accuracy. The computation time for the new method is seen to be competitive. The
graphs also show that the scaled errors for the 20DISBBDF method are smaller when
compared with thatin20OBBDF method.
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