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Abstract
In this report the quality of (8-16mm size) aggregate from Umuaga which has a doubtful  quality was 
studied through  a mathematical model   built  from Sheffe's  Simplex method  of mixture design  to 
cover a range  of water/cement ratio , fine and course aggregate ratios of 0.5 to 0.6 ,1.0 to 1.5 and 1.5 to 4, 
respectively. The optimum strength, water/cement ratio  and associated mix  proportions of   
12.231N/mm2 ,0.532 and 1:1.6:2.7, respectively, were obtained.  When compared with the strength of 
a similar mix proportion with granite aggregate ,estimated at about 25 to 30N/mm2 , it was 
recommended that the use of concrete made with these aggregates be restricted to lintels and columns  
of load bearing  walls of not less than three storey to avoid excessive  waste of cement and risk of building 
failure.
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Background to the Study
Umuaga, a town in the south eastern part of Nigeria, is a popular place for collection of high quality 
sedimentary rock aggregates for mainly building construction. These aggregates are produced in 
variety of sizes and are all classed as high quality; but 8-16mm size aggregate is highly contaminated 
with clay and silt and its quality doubtful.
This report seeks to study the quality of this aggregate (8-16mm size) through a mathematical model 
for the strength of concrete made from it and compare it with that of other known good aggregates like 
granite to enable boundaries for its use as an aggregate for structural concrete to be specified to guide  
stake holders.

The mathematical model is to be derived from scheffe's simplex method of mixture design, popular in 
the field of Industrial and Chemical Engineering. In this method of optimization only the proportions 
of the components in the mixture are required to study a given property of the mixture. Concrete being 
a mixture, this method can also be applied to it. Firstly a simplex is defined as a convex polyhedron with 
(k+1) vertices produced from k intersecting hyper planes in k-dimensional space 
(Akhnazarova,1982). Any co-ordinate system above 3-dimensions is referred to as hyper planes; such 
planes are not orthogonal. A 2-dimentional regular simplex is therefore an equilateral triangle, while a 
3-dimentional regular simplex is a regular tetrahedron.
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To describe a response surface for the prediction of a mixture property, for mixtures consisting of 
several  components q ,Scheffe used a regular (q-1) simplex to achieve it (Scheffe, 1958). Following the 
definition of simplex already explained , if q=2, the required simplex is a straight line. For q=3, the 
required simplex is an equilateral triangle, and if q=4 the simplex is a regular tetrahedron, etc. For such 
multi component system , the response surface is normally described using a high degree polynomial, 
of the type in Eq 1.0, having number of coefficients given by       where n is the degree of the 
polynomial(Zivord,2004).         

a+n
n

c

Knowing that Eq (2.0) also holds for mixtures,  

 

 
 

 

 

 

 

Where xi ≥ 0 represents the component concentration in the mixture , Scheffe (1958) was able to 
reduce the number of coefficients in Eq1.0 to arrive at a new polynomial whose number of coefficients 
is given by          ,thereby reducing the number of experimental trials required to evaluate the 
coefficients. Demonstrating this reduction for a four-component mixture we have:  
From Eq (1.0) and Eq (2.0)

Multiplying Eq (4.0) by bo, x1, x2, x3 and x4, separately, and rearranging the variables the following 
equations are obtained;

 

 

 

 

Substituting Eqs 5.0, 6.0, 7.0, 8.0 and 9.0 into Eq. 3.0 and rearranging yields

Eq(10) is the scheffe's reduced second degree polynomial for 4-component mixtures. It has only 10 
coefficients instead of 15, reducing the number  of experimental trials by 5.
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Factor Notation on a Simplex Lattice 
Each component to be used in a mixture is divided into (n+1) similar level (parts), where n is the degree 
of the polynomial to be used in the model. The component compositions and their respective 
concentrations in each mixture are shown by the use of subscripts. For example, a mixture xij could 
contain only one component with its full concentration denoted as x1, x2, x3 or x4 ; another mixture 
could contain two components of equal concentrations denoted as x12, x13, x14, x23, x24 or x34. A 
mixture having two components of different concentrations is denoted as x112, x113, x224, etc. – the 
number of times each of the components appears in the subscript relative to the other is a measure of 
their relative concentration.

These mixtures are arrayed on the simplex to form a lattice, i.e. a uniform scatter that could be joined by 
crossing straight lines parallel to the edges of the simplex. For tetrahedrons, for instance, starting from 
the vertex with straight component mixtures x1, x2, x3, etc; followed by the edges with binary 
component mixtures x12, x13, x24, etc; then the faces with 3-component mixture x124, x234 etc; and 
finally the interior with 4-component mixtures, this sequence is followed until all the required 
experimental trials are depicted on the simplex. Fig. 1.0 shows the positions of all the factors (mixtures) 
on a regular tetrahedron for a second degree polynomial to be used for the description of the response 
space for a 4-component mixture – a (4, 2) – lattice.

 X1 

X1

 
X1

 

X1

 X2

 X4 

X3

 
X3 

X2

 

X2 

Fig. 1.0: Factor Notations for a (4, 2) – Lattice 
A matrix table is normally used to display these factors (see left side of table 1.0) each row displaying 
a mixture with its components and concentrations.
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Table 1.0: Matrix table for Scheffe’s (4, 2) -  Lattice Polynomial  
Pseudo - Components 

 
Response -  Real Components 

  
S/N

 
x1
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X4

  
Z1

 
Z2

 
Z3 Z4
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1
 

0
 

0
 
0

 
Y1

 
0.6

 
1.0

 
1.5 4

2

 
0

 
1

 
0

 
0

 
Y2

 
0.5

 
1.0

 
1.0 1½

3

 

0

 

0

 

1

 

0

 

Y3

 

0.55

 

1.0

 

1½ 3.0
4

 

0

 

0

 

0

 

1

 

Y4

 

0.555

 

1.0

 

2 4.0

5

 
  

0

 

0

 

Y12

 

0.55

 

1.0

 

1.25 2.75

6

 
 

0

 
 

0

 

Y13

 

0.575

 

1.0

 

1.5 3.5

7

 
 

0

 

0

 
 

Y14

 

0.578

 

1.0

 

2.0 4.0

8

 

0

 
  

0

 

Y23

 

0.525

 

1.0

 

1.25 2.25

9 0 0 Y24 0.528 1.0 1.75 2.75

10 0 0 Y34 0.553 1.0 2.0 3.5

 

For the fact that concrete mixtures have its sum of proportions above unity a congruent simplex is 
necessary such that the mix proportions at the vertices show the range of w/c ratio, cement, fine 
aggregate and coarse aggregate ratios, respectively, the required polynomial model will cover or predict 
(see fig. 2.0).

Z1(0.6: 1.0: 
1.5:4.0)

 

(0.5:1.0:1.0:1½)Z

2

Z4

 (0.555:1.0:2½:4.0)

Z3

(0.55:1.0:1½:3.0)

Fig. 2.0: Real Component Simplex (only vertices are shown)
The former simplex, fig. 1.0, is called Pseudo-component simplex and the later, fig. 2.0, real component 
simplex. From the later (real components) a Z-matrix is formed whose transpose becomes the 
conversion factor from pseudo to real component; i.e. from fig. 2.0

To demonstrate the use of Eq (11) in table 1.0, the 5th row in the real component side is obtained by 
multiplying [Z]T matrix by the corresponding row in the pseudo-component side of table 1.0,  i.e.
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In this way all the corresponding rows in the real component side are obtained producing a congruent 
table and simplex suitable for concrete.

Material and Method

(i) Materials 
Materials needed for the experiment include sample of unwashed coarse aggregate (gravel, 8-16mm 
size only) from Umuaga gravel pith. The samples were stored in sacks, indoor, so that moisture variation 
in the samples would be minimal. The laboratory equipments needed include universal crushing 
machine, 150 x 150mm x 150mm cube moulds, mould oil, weighing balance, trowel and curing tank.

(ii) Method 
Using the weighing balance; water, cement fine aggregate and coarse aggregate were weighed out, 
respectively, in the proportions shown in table 1.0- right side - in such a way that the materials weighed 
out served for three cubes. The materials were thoroughly mixed together inside a non-absorbent 
container before water was added and final mixing was done. Three cubes were cast from each of the 
mix proportions, making 60 cubes in the whole. The fresh concrete was filled into the moulds in three 
layers, each layer tamped not less than 25 times. The top was scraped off with the trowel. The concrete 
was allowed to harden for 24 hours, after which the mould was removed and the cubes were water-cured 
for 28 days in the curing tank. At the end of 28 days the cubes were crushed in the universal crushing 
machine. The results and averages from the test points were tabulated in columns 7 to 10 of table 2.0. 
Extra ten test points were provided for validation of the model. 
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Predicte
d values

Real Components (Concrete 
Mix ratios)

1 1 0 0 0 Y1 4.44 4.44 3.57 4.15 4.15 0.6 1 1 ½ 4 
2 0 1 0 0 Y2 8.89 8.89 8.00 8.59 8.59 0.5 1 1 1 ½ 
3
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0

 

1

 

0

 

Y3

 

5.56

 

4.44

 

6.22

 

5.41

 

5.41

 

0.55 1 1 ½ 3
4

 

0

 

0
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1

 

Y4

 

5.33

 

4.44
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4.59

 

4.59

 

0.555 1 2 ½ 4
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0

 

0
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8.44

 

6.22
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7.48

 

0.55 1 1¼ 2¾ 
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0

 

Y13
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8.22

 

9.41

 

9.41
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10.67
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0.533 1 2 3½ 
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9.63

 

11.05
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0

 
  

C2

 

11.11

 

11.11
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9.63

 

11.41

 

0.564 1 1¾ 3½ 
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C3

 

11.11

 

13.11

 

9.33

 

11.18

 

11.86

 

0.551 1 1.625 3.12
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0

 

0
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9.00
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10.30

 

9.17

 

0.585 1 1.833 4.0
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0
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10.22
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8.89
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9.98

 

0.55 1 1.375 2.87
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12.44

 

13.33

 

10.82

 

0.539 1 1 ½ 2 ¾ 

17

 
 

0
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9.11
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11.42

 

0.535 1 2 3 ¾ 
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0
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9.42
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8.92

 

9.87

 

0.564 1 1.625 3.37
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7.78
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12.22

 

9.63

 

10.71

 

0.538 1 1.375 2.62
5

20

 
  

0

 
 

C10

 

8.89

 

8.89

 

10.22

 

9.33

 

10.85

 

0.552 1 1.667 3.16
7

 

Development of the Model
The general form of Scheffe's (4,2) – Lattice Polynomial is given by

From table 2.0, Column 10:

The model for compressive strength for Umuaga sample becomes 
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The predictions from Eq 13 are given in table 2.0 Column 11.

Validation of the Model (Test for Adequacy)
Adequacy of the model (Eq 13) can be tested through Fisher's variance ratio, whereby the calculated 
value of Fisher's ratio F is compared with the tabulated value in the Quantile of the F-Distribution.

In the above equations n is the number of experimental trials, m is the number of replications for each 
th experimental trial,     is the number of coefficients in the model, is the average response for i

iu thexperimental trial,   y   is the u  replicate response value for ith trial. If F is less than the tabulated value, 
then the model is adequate, i.e.

where the value 2.1 is the limiting value of F obtained from any table of 
Quantiles of F-Distribution.

Optimization of the Model
The model (Eq 13) was optimized through a Quick-Basic computer program, whose flowchart is given 
in Fig. 3.0. The maximum values given by the computer for strength, water, cement, fine aggregate and 
coarse aggregate ratios are 12.2308KN/mm2, 0.532, 1, 1.6 and 2.7, respectively.
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START

Ymax =0, M = 0

 

N = 0, K = 0

 

P = 0

 

READ A$, N$, 
A, B, C, D, E, F, 
G, H, I, J

 

X1= 0

 

X2= 0

 

X3= 0

 

X4 = 1 – X1

 

– X2

 

–

 

X

 

Y = AX 1 + BX2 + CX3 + DX4

 

+ EX1X2 + FX1X3 + GX1X4 + 
HX1X3+ IX2X4 + JX3X4

 

 

X3 = X3 + 0.1 

 

X3>1

 

X2 = X2+ 0.1 
 

X2>1  

X1 = X1+ 0.1 
 

X1>1
 

B

 

Z1 = 0.6M + 0.5N + 0.55K 
       + 0.555P

 

Z2 = M+N+K+P

 

Z3 = 1.5M + 1.0N + 1.5K + 
2.5P

 

DATA
 

PRINT A$, N$, Z1, Z2, Z3, 

 

STO
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Y
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K = X3

 

NO

 

YES

 

NO  

NO
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KEY
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=

 

Gravel Pith

 

N$

 

=

 

Strength Type
A,B,C  -

 

- J are the coefficients 
of the model

 

Ymax, Z 1, Z 2, Z 3 and Z 4 are 
the maximum strength, wat er, 
cement, fine agg, coarse agg 

B

 

YES
 

YES  

YES

 

Fig3.0 Optimization program flow-chart

Page      186

INTERNATIONAL JOURNAL OF COMPARATIVE STUDIES IN INTERNATIONAL RELATIONS  AND DEVELOPMENT 
VOL 3 NO 1, JULY 2014.ISSN PRINT: 2354-4298, ONLINE 2354-4201



Discussion of Results 
Looking at the results of experiments and predictions from the model in table 2.0 (Columns 7, 8, 9, 10 
and 11) it can be observed that the compressive cube strengths for the various mix proportions are 
clearly very low. Considering the optimum value given by the computer program, whose proportions 
are comparable with that of grade 25 concrete, when granite is used instead -  it has an average strength 
of 12.2308KN/mm2, which is about half of the expected value - this shows that aggregates of sizes 8 – 
16mm from Umuaga are  inferior.

Recommendation and Conclusion  
From the above results and discussions it is obvious that concretes from these aggregates cannot be 
used in areas where there is excessive compressive and tensile forces such as bridges, culverts, thin slabs, 
foundation, etc. It is therefore recommended for only columns and lintel of load bearing walls, the 
storey should not be greater than three.
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