MATHEMATICAL MODEL FOR STRENGTH OF CONCRETE PRODUCED FROM 8-16MM SIZE AG GREGATES FROM UMUAGA GRAVEL PITHS

${ }^{1}$ Adinna B. O., ${ }^{2}$ O nyeyili I. O. ${ }^{3}$ N wajuaku A. I. \& ${ }^{4}$ Umeonyiagu I.E.
${ }^{1}$ D epartment of C ivil Engineering, Faculty of Engineering N namdi AzikiweU niversity, P.M .B 5025 , Awka.
${ }^{2}$ D epartment of Civil Engineering, AnambraStateU University, U I i

Abstract

In this report the quality of ($8-16 \mathrm{~mm}$ size) aggregate from U muaga which has a doubtful quality was studied through a mathematical model built from Sheffe's Simplex method of mixture design to cover arange of water/ cementratio, fine and courseaggregate ratiosof 0.5 to $0.6,1.0$ to 1.5 and 1.5 to 4 , respectively. The optimum strength, water/cement ratio and associated mix proportions of $12.231 \mathrm{~N} / \mathrm{mm} 2,0.532$ and 1:1.6:2.7, respectively, wereobtained. W hen compared with thestrength of a similar mix proportion with granite aggregate ,estimated at about 25 to $30 \mathrm{~N} / \mathrm{mm} 2$, it was recommended that the use of concretemade with these aggregates be restricted to lintel s and columns of load bearing wallsofnot less than threestorey to avoid excessive wasteof cement and risk of building failure.

Keywords: M athematical model, C oncrete, U muaga and G ravel Piths

Background to theStudy

U muaga, a town in the south eastern part of N igeria, is a popular place for collection of high quality sedimentary rock aggregates for mainly building construction. These aggregates are produced in variety of sizes and are all classed as high quality; but $8-16 \mathrm{~mm}$ size aggregate is highly contaminated with clay and siltand itsquality doubtful.
This report seeks to study the quality of this aggregate ($8-16 \mathrm{~mm}$ size) through a mathematical model for the strength of concretemade from it and compare it with that of other known good aggregates like granite to enable boundaries for its use as an aggregate for structural concrete to be specified to guide stakeholders.

The mathematical model is to be derived from scheffe's simplex method of mixture design, popular in the field of Industrial and Chemical Engineering. In this method of optimization only the proportions of the components in themixture are required to study a given property of the mixture. C oncretebeing a mixture, this method can also be applied to it. Firstly asimplexisdefined as a convex polyhedron with $(k+1)$ vertices produced from k intersecting hyper planes in k-dimensional space (Akhnazarova,1982). Any co-ordinate system above3-dimensions is referred to as hyper planes; such planes are not orthogonal. A 2-dimentional regular simplex istherefore an equilateral triangle, whilea 3-dimentional regularsimplexis aregulartetrahedron.

To describe a response surface for the prediction of a mixture property, for mixtures consisting of several componentsq,Scheffeused a regular ($q-1$) simplexto achieveit(Scheffe, 1958).Followingthe definition of simplex already explained, if $q=2$, the required simplex is a straight line. For $q=3$, the required simplex is an equilateral triangle, and if $q=4$ the simplex is a regular tetrahedron, etc. For such multi component system, the response surface is normally described using a high degree polynomial, of the type in Eq 1.0, having number of coefficients given by $\mathrm{C}_{a+\mathrm{n}}^{n}$ where n is the degree of the polynomial(Zivord,2004).

$$
\hat{y}=b_{0}+\sum_{1 \leq i s q} b_{i} x_{i}+\sum_{1 \leq i \alpha j \leq q} b_{i j x_{i} x_{j}}+\sum_{1 \leq i<j<k \leq q} b_{i j k} x_{i} x_{j} x_{k}+\sum b t_{1} i_{2} \ldots i_{n} x i_{1} x i_{2} \ldots x l_{n}
$$

Knowing that Eq (2.0) also holds for mixtures,
$\sum_{i=1}^{q} x_{i}=1$
Where xi ≥ 0 represents the component concentration in the mixture, Scheffe (1958) was able to reduce the number of coefficientsin Eq1.0 to arrive at a new polynomial whose number of coefficients is given by C_{q+n-1}^{n},thereby reducing the number of experimental trials required to evaluate the coefficients. Demonstratingthisreduction for afour-componentmixturewehave:
FromEq(1.0) and Eq(2.0)

```
\(\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}++b_{12} x_{1} x_{2}+b_{13} x_{1} x_{3}\)
    \(+b_{14} x_{1} x_{4}+b_{28} x_{2} x_{2}+b_{24} x_{2} x_{4}+b_{24} x_{2} x_{4}+b_{11} x_{1}^{2}+b_{22} x_{2}^{2}\)
    \(\left.+b_{23} x_{2}^{2}+b_{44} x_{4}{ }^{2}-\quad-\quad---------3.0\right)\)
```


M ultiplying Eq (4.0) by bo, x1, x2, x3 and $x 4$, separately, and rearranging the variables the following equations are obtained;

```
\(b_{0}=b_{0} x_{1}+b_{0} x_{2}+b_{0} x_{3}+b_{0} x_{4}-\cdots-----------------(5.0)\)
\(x_{1}^{2}=x_{1}-x_{1} \mathrm{x}_{2}-x_{1} x_{3}-x_{1} x_{4}-\cdots-(6.0)\)
\(x_{2}^{2}=x_{2}-x_{1} x_{2}-x_{2} x_{3}-x_{2} x_{4}-\cdots-(7.0)\)
\(x_{3}^{2}=x_{3}-x_{1} x_{3}-x_{2} x_{3}-x_{3} x_{4}-\cdots-(8.0)\)
\(x_{4}^{2}=x_{4}-x_{1} x_{4}-x_{2} x_{4}-x_{3} x_{4}-\cdots-(9.0)\)
```

Substituting Eqs 5.0, 6.0, 7.0, 8.0 and 9.0 into Eq. 3.0 and rearranging yields

```
\(\hat{Y}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{2} x_{2}+\beta_{4} x_{4}+\beta_{12} x_{1} x_{2}\)
\(\beta_{13} x_{1} x_{3}+\beta_{14} x_{1} x_{4}+\beta_{23} x_{2} x_{3}+\beta_{24} x_{2} x_{4}\)
    \(+\beta_{34} x_{3} x_{4}-\quad-\quad-\quad-------------(10)\)
```

$\mathrm{Eq}(10)$ is the scheffe's reduced second degree polynomial for 4-component mixtures. It has only 10 coefficients instead of 15 , reducingthenumber of experimental trialsby 5 .

Factor Notation on aSimplexL attice

Each component to be used in amixtureisdivided into ($n+1$) similar level (parts), wheren isthedegree of the polynomial to be used in the model. The component compositions and their respective concentrations in each mixture are shown by the use of subscripts. For example, a mixture xij could contain only one component with its full concentration denoted as $x 1, x 2, x 3$ or $x 4$; another mixture could contain two components of equal concentrations denoted as $x 12, x 13, x 14, x 23, x 24$ or $x 34$. A mixture having two components of different concentrations is denoted as $\times 112, \times 113, \times 224$, etc. - the number of times each of the components appears in the subscript relative to the other is a measure of their relativeconcentration.

Thesemixtures arearrayed on the simplex to form a lattice, i.e. a uniform scatter that could bejoined by crossing straight lines parallel to the edges of the simplex. For tetrahedrons, for instance, starting from the vertex with straight component mixtures $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$, etc; followed by the edges with binary component mixtures $\times 12, \times 13, \times 24$, etc; then the faces with 3 -component mixture $\times 124, \times 234$ etc; and finally the interior with 4-component mixtures, this sequence is followed until all the required experimental trial sare depicted on thesimplex. Fig. 1.0 showsthepositions of all thefactors(mixtures) on a regular tetrahedron for a second degree polynomial to beused for the description of the response spacefora4-componentmixture- a(4,2) - lattice.

Fig. 1.0: Factor Notations for a (4, 2) - Lattice
A matrix table is normally used to display these factors (see left side of table 1.0) each row displaying a mixture with its components and concentrations.

Table 1.0: Matrix table for Scheffe's (4, 2) - Lattice Polynomial

S/N	x_{1}	X_{2}	X_{3}	X		Z_{1}	Z_{2}	Z_{3}	Z_{4}
1	1	0	0	0	Y_{1}	0.6	1.0	1.5	4
2	0	1	0	0	Y_{2}	0.5	1.0	1.0	$11 / 2$
3	0	0	1	0	Y_{3}	0.55	1.0	$11 / 2$	3.0
4	0	0	0	1	Y_{4}	0.555	1.0	$21 / 2$	4.0
5	1/2	$1 / 2$	0	0	Y_{12}	0.55	1.0	1.25	2.75
6	1/2	0	1/2	0	Y_{13}	0.575	1.0	1.5	3.5
7	1/2	0	0	$1 / 2$	Y_{14}	0.578	1.0	2.0	4.0
8	0	1/2	$1 / 2$	0	Y_{23}	0.525	1.0	1.25	2.25
9	0	1/2	0	$1 / 2$	Y_{24}	0.528	1.0	1.75	2.75
10	0	0	$1 / 2$	$1 / 2$	Y_{34}	0.553	1.0	2.0	3.5

For the fact that concrete mixtures have its sum of proportions above unity a congruent simplex is necessary such that the mix proportions at the vertices show the range of w / c ratio, cement, fine aggregate and coarse aggregate ratios, respectively, the required polynomial model will cover or predict (seefig.2.0).

Fig.2.0: Real C omponentSimplex (only verticesareshown)
Theformer simplex, fig. 1.0, is called Pseudo-componentsimplexand thelater, fig.2.0, real component simplex. From the later (real components) a Z-matrix is formed whose transpose becomes the conversion factor from pseudo to real component; i.e.from fig.2.0

$$
z=\left[\begin{array}{cccc}
0.6 & 1.0 & 1.5 & 4.0 \\
0.5 & 1.0 & 1.0 & 1 \frac{1}{2} \\
0.55 & 1.0 & 1 \frac{1}{2} & 3.0 \\
0.555 & 1.0 & 2 \frac{1}{2} & 4.0
\end{array}\right]
$$

To demonstrate the use of Eq (11) in table 1.0, the 5th row in the real component side is obtained by multiplying [Z]T matrix by the corresponding row in the pseudo-component side of table 1.0, i.e.

Page	182

In this way all the corresponding rows in the real component side are obtained producing a congruent tableand simplexsuitablefor concrete.

Material and M ethod

(i) Materials

M aterials needed for the experiment include sample of unwashed coarse aggregate (gravel, $8-16 \mathrm{~mm}$ sizeonly) fromU muagagravel pith. T hesampleswerestored in sacks, indoor, so that moisturevariation in the samples would be minimal. The laboratory equipments needed include universal crushing machine, $150 \times 150 \mathrm{~mm} \times 150 \mathrm{~mm}$ cubemoulds, mould oil, weighing balance, trowel and curingtank.

(ii) Method

Using the weighing balance; water, cement fine aggregate and coarse aggregate were weighed out, respectively, in the proportions shown in table 1.0 - right side- in such away that the materials weighed out served for three cubes. The materials were thoroughly mixed together inside a non-absorbent container before water was added and final mixing was done. Three cubes were cast from each of the mixproportions, making 60 cubes in the whole. T he fresh concrete was filled into the moulds in three layers, each layer tamped not less than 25 times. The top was scraped off with the trowel. T he concrete was all owed to harden for 24 hours, after which the mould was removed and the cubes werewater-cured for 28 days in the curing tank. At the end of 28 days the cubes were crushed in the universal crushing machine. T he results and averages from the test points were tabulated in columns 7 to 10 of table 2.0. Extraten test pointswere provided for validation of themodel.

INTERNATIONAL JOURN AL OF COM PARATIVE STUDIESIN INTERNATIONAL RELATIONS AND DEVELOPMENT VOL 3 N O 1, JULY 2014.ISSN PRINT: 2354-4298, ON LINE 2354-4201

Development of the Model

The general form of Scheffe's (4,2) - Lattice Polynomial is given by
$\hat{Y}=\sum_{1 \leq i \leq 4} \beta_{i} x_{i}+\sum_{1 \leq i<j \leq 4} \beta_{i j} x_{i} x_{j}-\cdots-12$
where $\beta_{i}=\bar{y}_{i}, \beta_{i j}=4 \bar{y}_{i j}-2 \bar{y}_{i}-2 \bar{y}_{j}$
From table 2.0, Column 10:

$$
\begin{aligned}
& \beta_{1}=4.15, \beta_{2}=8.59, \beta_{3}=5.41, \beta_{4}=4.59 \\
& \beta_{12}=4 \times 7.48-2 \times 4.15-2 \times 8.59=4.44 \\
& \beta_{18}=4 \times 9.41-2 \times 4.15-2 \times 5.41=18.52 \\
& \beta_{14}=4 \times 9.85-2 \times 4.15-2 \times 4.59=21.92 \\
& \beta_{23}=4 \times 10.00-2 \times 8.59-2 \times 5.41=12.00 \\
& \beta_{24}=4 \times 11.41-2 \times 8.59-2 \times 4.59=19.28 \\
& \beta_{34}=4 \times 10.67-2 \times 5.41-2 \times 4.59=22.68
\end{aligned}
$$

The model for compressive strength for U muaga sample becomes

$$
\begin{gathered}
\bar{Y}=4.15 x_{1}+8.59 x_{2}+5.41 x_{3}+4.59 x_{4}+4.44 x_{1} x_{2}+18.52 x_{1} x_{3}+21.92 x_{4}+12.00 x_{2} x_{3}+19.28 x_{4}+22.68 x_{2} x_{4} \\
-------13
\end{gathered}
$$

The predictions from Eq 13 are given in table 2.0 C olumn 11.
Validation of the M odel (Test for Adequacy)
Adequacy of the model (Eq 13) can be tested through Fisher's variance ratio, whereby the calculated value of Fisher's ratio F is compared with the tabulated value in the Q uantile of the F-D istribution.
$F=\frac{S_{g}^{2}}{S_{e}^{2}} \quad-\quad-\quad-\quad 14$
Where $\mathrm{Sg}^{2}=\frac{\mathrm{m}}{\mathrm{n}-1} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\bar{y}_{i}-\hat{\mathrm{y}}_{\mathrm{i}}\right)^{2}--15$
and $S_{e}^{2}=\frac{1}{n(m-1)} \sum_{i=1}^{n} \sum_{u=1}^{n}\left(y_{i}-\bar{y}_{i}\right)^{2} \ldots--16$
In the above equations n is the number of experimental trials, m is the number of replications for each experimental trial, \bar{y} is is the number of coefficients in the model, is the average response for $\mathrm{i}^{\text {th }}$ experimental trial, $y^{\text {iu }}$ istheu ${ }^{\text {th }}$ replicate response valuefor ith trial. If F isless than the tabulated value, thenthemodel is adequate, i.e.
$S_{\mathrm{g}}^{2}=\frac{3}{10} \times 19.7424$
$S_{e}^{2}=\frac{1}{40} \times 120.8724$
$F=\frac{S_{g}^{2}}{S_{e}^{2}}=\frac{(3 / 10) \times 19.7424}{(1 / 40) \times 120.8724}$
$=1.96<2.1$ okay where the value 2.1 is the limiting value of F obtained from any table of Q uantiles of F-D istribution.

Optimization oftheModel

Themodel (Eq13) wasoptimized through aQ uick-Basic computer program, whoseflowchart is given in Fig.3.0. Themaximum values given by the computer for strength, water, cement, fine aggregate and coarseaggregateratios are $12.2308 \mathrm{KN} / \mathrm{mm} 2,0.532,1,1.6$ and 2.7 ,respectively.

Discussion of Results

Looking at the results of experiments and predictions from themodel in table2.0 (C olumns 7, 8, 9, 10 and 11) it can be observed that the compressive cube strengths for the various mix proportions are clearly very low. Considering the optimum value given by the computer program, whose proportions are comparable with that of grade 25 concrete, when granite is used instead - it has an average strength of $12.2308 \mathrm{KN} / \mathrm{mm} 2$, which is about half of the expected value- this shows that aggregates of sizes 8 16 mm from U muagaare inferior.

Recommendation and C onclusion

From the above results and discussions it is obvious that concretes from these aggregates cannot be used in areas wherethere is excessive compressive and tensileforces such as bridges, culverts, thin slabs, foundation, etc. It is therefore recommended for only columns and lintel of load bearing walls, the storey should not begreater than three.

References

Akhnazarova, S. \& K afarove, V. (1982). "Experiment optimization in Chemistry and Chemical Engineering", M irPublisher: M oscow.
Akhnazarova, S. \& KAFAROV, V. (1972). "Statistical M ethod of D esign and Processing Experiments", M KUTT Press: M oscow.
Greer, A.(1988) "Statisticsfor Engineers",StanleyT hornesLtd,C Cheltenham: England.
M osley,W.H.\& BungeyJ.H .(1990). "Reinforced C oncreteD esign",M acmillan PressLtd: H ongkong.
Scheffe,H . (1958).J.R oyStatist, Soc. Ser. B., 20,N o. 2
Shetty, M .S. (2005), "C oncreteTechnology,Schand Company Ltd, N ew D elhi.
Zivorad Lazic R. (2004) "D esign of Experiments in Chemical Engineering", Wiley-VchVerlag G mbH \& Co.KGaA, Weinheim.

