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A b s t r a c t

istribution and inventory planning in a multi-echelon system are 

Dstudied under an uncertain demand context. To deal with this 

problem a mixed integer linear programming (MILP) model is 

proposed. This considers a multi-echelon system formed by N-warehouses 

and M-retailers. The problem consists on determining the optimal reordering 

plan for the operating network, which minimises the overall system's 

operation cost. The uncertain demand faced by retailers is addressed by 

dening the optimal safety stock that guarantees a given service level at each 

regional warehouse and each retailer. Also, the risk pooling effect is taken into 

account when determining inventory levels in each entity. A case study based 

on a real retailer distribution chain is presented and solved.
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Background to the Study 

The distribution operation within different industries faces uncertainties that cover a 

wide range of factors such as demands, prices and lead times for the supply of products. 

Triki and Al-Hinai (2016) researched the optimisation techniques for multi-period 

planning horizon and Omrani and Ghiasi (2017) studied optimisation problems with 

data uncertainty. Demand uncertainty and bullwhip effect phenomenon are important 

drivers that all managers must to consider (Vicente et al., 2018). Between these, demand 

uncertainty may well have the dominant impact on prots and service level. This can lead 

to excess inventories or inability to meet service level. Excess inventory results in 

unnecessary holding costs, while the inability to meet the customer needs results in both 

loss of prot with the possibility, on long-term, loss of customers (Jung et al., 2004).

Inventory optimisation in a multi-echelon supply chain network, characterized by an 

uncertain demand, is a real-world problem (Amiri-Aref et al., 2018). In this context, 

optimal inventory planning has become a major goal of the companies in order to 

simultaneously reduce costs and improve service level in today's increasingly 

competitive business environment (Daskin et al., 2002; Axsater, 2003; Yadollahi et al., 

2017). A high service level can be obtained by maintaining increased inventory levels to 

hedge against demand uncertainties. Although additional inventory improves service 

level, it increases inventory holding cost. It is then necessary a trade-off between service 

level and inventory holding cost. This can be achieved through the solution of stochastic 

optimisation problems where the inventory levels are the key optimisation variables 

(Stephan et al., 2010). One such approach implies the use of the safety stock as a lower 

bound on the inventory level which is chosen such as to absorb some level of the demand 

uncertainty (Graves and Willems, 2000).

There exists a large number of works on estimating safety stock levels based on classical 

inventory theory. However, they fail to address the key features of realistic supply chain 

problems, namely, multiple products sharing multiple facilities with capacity constraints 

and demands originating from multiple customers. In addition, in real world supply 

chains, safety stock levels are dependent on factors such as the probabilistic distribution 

of the demands, the demand to capacity ratio, service level on meeting the demands for 

multiple products and transportation lead times among facilities. Such factors introduce 

complexities that classical inventory models simply do not accommodate (Porteus, 2002; 

Chopra and Meindl, 2004).

The main objective of this paper is to explore this opportunity by adapting the concept of 

safety stock into a network inventory planning model. Within this context, the goal of the 

present research is to develop a model that includes lower bounds on the inventory levels 

of various products and through different entities. Additionally, the approach entails the 

denition of the safety stock as a model variable and a guaranteed service level as a model 

parameter to reduce the shortage in inventory levels. The model also considers risk 

pooling effect, rst referred by Eppen (1979), which states that signicant safety stock cost 

can be saved by grouping in one central location the demand of multiple stocking 
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locations. The remainder of this paper is organised as follows. Section 2 includes a 

literature review on mathematical optimisation approaches to model demand 

uncertainty and the guaranteed service approach to model the multi-echelon 

distribution and inventory planning system. The problem denition is given in Section 

3. Section 4 describes the distribution and inventory planning mathematical model. 

The case study is present in Section 5. Section 6 presents the results and analysis. 

Finally, the conclusions are drawn in Section 7.

Literature Review

Mathematical optimisation approaches applied to the modelling of inventory planning in 

supply chains considering uncertain demand has been researched over the last years, but 

the inventory management is usually considered without detailed inventory planning 

supply chain policies (Inderfurth, 1991; Minner, 2001; Simchi-Levi and Zhao, 2011; Hu et 

al., 2017). O'Driscoll (2017) proposed a two-stage stochastic programming model for a 

competitive oil renery with stochastic crude and fuel prices. Some research revealed that 

the nature of demand uncertainty was the key differentiator between the various supply 

chain optimisation techniques (Cole and Bradshaw, 2016; Zaman and Saha, 2018). In the 

published models, the safety stock is often given as a parameter and it usually is treated as 

a lower bound of the total inventory level (Relvas et al., 2006; Schulz et al., 2005; Paterson 

et al., 2011). This approach cannot optimize the safety stock levels, especially when 

considering demand uncertainty. Thus, it can only provide an approximation of the 

inventory cost and may lead to suboptimal solutions. Jung et al. (2004) use a simulation-

optimisation framework to determine the optimal safety stocks levels of a supply chain 

with consideration of production capacity.

On the other hand, most of the existing literature focuses on single-echelon systems. The 

uncertain demand is addressed by dening the optimal amount of safety stock that 

guarantees certain service level at a given customer. Daskin et al. (2002) introduced a 

model in which supply chains design decisions integrate inventory considerations. It is 

assumed that no limitation in storage capacity is considered and all lead times from 

supplier to distribution centres are the same. Thus, given these assumptions, the 

inventory structure is considered as a single-echelon system. Similar research can be 

found in Shen et al. (2003). Ozsen et al. (2008, 2009) extend the model of Daskin et al. (2002) 

and Shen et al. (2003) to include capacities on the inventory held. Bossert and Willems 

(2007) extend the guaranteed service modelling framework in order to optimise the 

inventory policy in a supply chain.

The rst one uses a stochastic programming model where uncertainty is considered 

directly using a scenario-based approach (Tsiakis et al., 2001; Sahinidis, 2004). Each 

scenario is associated with a certain probability of occurrence and represents one possible 

realisation for the uncertain parameter. In general, two decision stages are considered. In 

the rst stage, 'here and now' decisions have to be made before the uncertain parameter 

realisation is known. In the second stage, 'wait and see' decisions are considered which 

are associated with a recourse action because they can be made after the random 
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parameter is known. The main disadvantage of this method is that the model size 

tends to increase rapidly with the number of scenarios considered. In addition, it is not 

always feasible to explicitly enumerate all possible discrete values of the uncertain 

parameter.

The second one consists of using the chance constraint approach in which each uncertain 

parameter is treated as a random variable with a given probability distribution, which is 

applied in several cases to model demand uncertainty (Gupta and Maranas, 2003; You 

and Grossmann, 2008; Rodriguez and Vecchietti, 2011; Humair and Willems, 2011). The 

guaranteed service approach aims at determining the optimal placement and amount of 

safety stocks in a multi-echelon system to ensure the overall target service level at the 

lowest cost (Eruguz et al., 2014). Recently, Hong et al. (2018) study a supply chain 

conguration problem to optimise the service time and option selection decisions to 

minimise the overall cost of the supply chain. Generally, in a supply chain, most of the 

parameters are not deterministic, for this reason is better to consider demand and service 

time as uncertain parameters (Rashid et al., 2018). When applying this approach demand 

uncertainty is considered by specifying a demand level above the mean that must be 

satised. One strategy explored by You and Grossmann (2008) is to dene the safety stock 

as a decision variable and a guaranteed service level as a parameter in the model to reduce 

the shortage in the inventories.

In this work, the second approach is chosen as it allows determining a safety stock level at 

supply chain entities in order to guarantee a certain service level and avoids the creation 

of multiple scenarios in a single model, which increases largely the model size. The 

guaranteed service approach has been addressed in several problems in multi-echelon 

stochastic inventory planning and supply chain optimisation (Eruguz et al., 2016) but it 

has not yet been treated on short-term inventory planning problems (Graves and 

Willems, 2000, 2005, 2008; Neale and Willems, 2009). On another hand, integrating 

stochastic inventory planning into the operational planning supply chain is nontrivial, 

and it has not been addressed in the existing literature.

The concept of guaranteed service approach, which is used in this work is based on the 

works by Graves and Willems (2000) and You and Grossmann (2010, 2011). Such concept 

is here applied to multi-echelon networks where when comparing to single-echelon 

inventory must consider explicitly the presence of lead time, which may include material 

handling time and transportation time. Within single-echelon systems, the ones already 

addressed in the literature, lead time is exogenous and generally can be treated as a 

parameter. The research objectives of the paper were presented and an adequate 

methodology is then required. To this end, the guaranteed service approach for multi-

period, multi-product and multi-echelon supply chain is applied to the problem in next 

section.

Problem denition

This section is an extended version that complements a previous one presented in a 

conference by Vicente et al. (2015). A generic supply chain under product demand 
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uncertainty is considered in this study, across the guaranteed service model approach. It 

comprises one central warehouse, multiple regional warehouses and multiple retailers as 

depicted in Figure 1, where multiple products are distributed over a given time horizon of 

multiple time periods.

Figure 1:  Supply chain structure (see online version for colours)

The structure assumes that retailers replenish their inventories from the regional 

warehouses, these replenish their inventories from a central warehouse and customer 

demand is observed at the retailers. Each retailer faces a normally distributed demand 
2

with mean μ and variance σ , which is independent of the other retailers' demands. For 

this supply chain structure, single sourcing is assumed, e.g., each retailer can only be 

served by one regional warehouse as each regional warehouse can only be served by one 

warehouse (central warehouse). Lateral transshipment between regional warehouses 

and between retailers is allowed. 

The corresponding deterministic order processing times, which include the material 

handling time and transportation time, are given. The guaranteed service time of the 

central warehouse and the guaranteed service time of each retailer are known. The safety 

stock factors for regional warehouses and retailers are also given. All storage and 

transportation capacities are limited and transportation occurs after orders have been 

placed. If the demand in a given time period and at a given retailer is not satised, this is 

assumed as a lost sale. The rst and second ones (stock and safety stock) are dened by 

unit stored and by time period on each regional warehouse or retailer. The third ones are 

dened by unit of product transported and are dependent of the order processing time. 

Transportation costs are considered by unit of material transported between the different 

stages of the supply chain. Related to these are the transshipping costs that represent the 

lateral transportation costs by unit that occurs within each stage between two identical 

entities. These can occur between regional warehouses or between retailers. Finally, lost 

sales costs are associated to the demand that cannot be satised and are dened by unit of 

product.
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The problem in study can then be dened as follows:

Given

i. The planning time horizon and the dened discrete time scale.

ii. The number of regional warehouses and retailers.

iii. The number of products.

iv. Initial inventory by product in each regional warehouse and retailer.

v. Mean and standard deviation of demand for each product on a time period basis 

(the product demand is normally distributed and occurs in retailers).

vi. Storage capacities in each regional warehouse and retailer by time period.

vii. Transportation capacities between entities.

viii. Order processing time between entities

ix. Ordering costs by order of each product at each regional warehouse and retailer 

(independent of order quantity).

Determine

i. The inventory proles by product throughout the planning time horizon at each 

regional warehouse and retailer in each time period.

ii. Safety stock by product for the planning time horizon in each regional warehouse 

and retailer.

iii. The ows of products across the supply chain for each time period. These involve 

shipping quantities between entities on different supply chain levels and 

transshipment quantities between entities on the same supply chain level.

iv. Lost sale quantities by product at each retailer in each time period.

Distribution and Inventory planning Mathematical Model

The supply chain distribution and inventory planning problem presented is formulated 

as a MILP model, as an extended version that complements a previous one presented in a 

conference by Vicente et al. (2015). This model uses a variable order quantity covering the 

demand of variable length time periods. It considers time represented through a 

discretized time scale, where the time periods have equal durations. The indices, sets, 

parameters and variables (non-negative continuous and binary) used in the model 

formulation are dened using the following notation

Case Study

In this section we present a case study based on a retail company. Due to condentiality 

reasons the data provided has been changed but still describes the real operation.

The model was implemented in GAMS 24.2 modelling language and solved using CPLEX 

12.3 solver in an Intel Core i7 CPU 3.40 GHz and 8GB RAM. The stopping criteria were 

either a computational time limit of 3,600 seconds or the determination of the optimal 

solution.

 

IJORMSSE | p.183



Table 1: General case study parameters

Table 2: Unitary products transportation costs (euro)

Table 3: Initial inventory level (Ito) on warehouses and retailers (unit)

Table 4: Product demand parameters (PD) data for product 1/product 2/product 3 (unit)
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Table 5: Order processing time (T1) of all products (time period)

The supply chain considered involves one central warehouse, two regional warehouses 

and four retailers. Three main types of product families are considered. The safety stock 

factors (SSFij) for regional warehouses and retailers were considered the same and equal 

to 1.96, which corresponds to 97.5% service level considering that the product demand is 

normally distributed. This service level is common in the industry sector of the company 

in study. The guaranteed service time of the central warehouse (SIi0) is 1 time period. As 

the last echelon, representing the retailers, is an exogenous input (which can be treated as 

a parameter), the guaranteed service time of retailers (Rikt) are set to 0 in order to have an 

immediate response. The maximum storage capacity for warehouses is of 5,000 units and 

for retailers is of 500 units. The transportation quantity limit between entities is 

considered between 0 and 500 units. A seven time period planning horizon was assumed 

to test our model (modelled in Section 4), which uses a variable order quantity covering 

the demand of variable length time periods.  Tables 1 to 5 present the parameters' values 

considered for this case study, including general model parameters, transportation costs, 

initial inventory levels, product demand and order processing time. Customer demands 

at retailers are random values of the normal distribution (Table 4), generated in GAMS 

24.2 modelling language.

 

Results and Analysis

The retail company wants to compare two options for order management in the supply 

chain:

Option A: Regional warehouse order and retailer order fullment ows per product can 

be formed by several ows of that product from any entity of the supply chain (e.g., on a 

per product perspective, each retailer could be served by any of the regional warehouses 

(a single combination) and by all others retailers).

Option B: Regional warehouse order and retailer order fullment ows by product are 

formed by only one ow of that product from only one entity in a different echelon of the 

supply chain (e.g., on a per product perspective, each retailer is only served by one 

regional warehouse and transshipment is not allowed). After analysing the obtained 

results it can be said that the company should decide by operating under option A. This 

option presents lower total costs and a higher service level. Although option B presents 
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zero holding in transit and transportation transshipment costs, however it presents 

high lost sale costs.

Conclusions and Recommendation 

This paper addresses an inventory planning model to determine the optimal inventory 

and distribution plan over a multi-echelon and multi-period planning time horizon 

under product demand uncertainty to support the decision-making process in short-term 

process planning. The study conclude that guaranteed service approach policy is selected 

to deal with uncertainty and is used to model the safety stock inventory system of a 

distribution company. The risk pooling effect is also considered in the model by relating 

the probability distribution functions of the demands in the downstream nodes to their 

upstream nodes and it therefore recommend: The proposed MILP model considers the 

safety stock level as a variable to be optimised and the service level as a parameter so as to 

reduce shortage occurrence in inventories.
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