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A b s t r a c t

aximum likelihood is a relatively simple method of  constructing an 

Mestimator for an un-known parameter µ. Maximum likelihood 

estimator (MLE) is obtained by taking the partial differentiation of  

likelihood function of  a distribution. While the penalized MLE is obtained by 

adding a penalty to the regular MLE. The aim of  this work is to make 

comparison between the regular MLE and penalized MLE of  a three (3) 

parameter  (α, λ and θ) Exponentiated Odd Generalized Exponential 

Exponential Distribution (EOGEED), this distribution has two shape and one 

scale parameters. Sample size 50, 100, 250 of  simulated data were generated to 

check the performance of  regular MLE and PMLE. The results show that the 

PMLE performs better than regular MLE especial for small sample size. 
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Background to the Study

Sometimes we have random data that we know comes from a parametric model, but we don't 

know the parameters. For instance, in an election between two candidates, polling data is 

drawn from a Bernoulli (p) distribution with an unknown parameter p. In this scenario, we 

would like to use the data to estimate the value of  the parameter p, since it predicts the election 

outcome (Jeremy & Jonathan, 2014). Maximum likelihood estimation (MLE) is one method 

among others used to estimate parameter(s).

As earlier mentioned, there are numerous approaches to estimating unknown parameters, 

and these estimates are based on various data. Since the MLE provides a single value for the 

unknown parameter (our estimates will eventually incorporate intervals and probabilities), it 

is an example of  a point estimate. The MLE has two benefits: it is frequently simple to 

calculate and, in basic examples, it matches our intuition. We must first determine the log 

likelihood of  the likelihood function in order to easily obtain MLE. We take a partial 

derivative since the likelihood and log likelihood maxima coincide because ln (x) is an 

increasing function. This log-likelihood function will produce a system of  non-linear 

likelihood equations that are too complex to solve analytically, but can be optimised 

numerically using global optimisation techniques found in programs like SAS, R, and Python.

The question of  which parameter value has the highest probability in the observed data is 

addressed by MLE. In addition to parameter estimation, MLE can be applied to complex 

models like temporal dependence, covariate effect, and non-stationary models. According to 

Razira Aniza et al. (2020), the MLE method performs better with a larger sample size than 

with a smaller one, particularly if  the sample size is less than 50. According to Hosking et al. 

(1985). Lazoglou & Anagnostopoulou (2017), sample sizes do not demonstrate good 

performance.

A flexible likelihood extension of  MLE can be achieved through penalisation, which also 

helps to improve it on small properties and works well with both large and small data sets. 

Coles and Dixon (1999) proposed PMLE and demonstrated through an investigation how the 

PMLE enhances MLE. Compared to a direct estimate without penalties, PMLE is given a 

smoother estimation that is also more accurate. Instead of  maximising the likelihood, 

penalised likelihood is usually achievable in terms of  minimising the negative log-likelihood 

(also referred to as the loss function). Instead, we will minimise q(θ|X) = −L(θ|X) + p(θ), 

where the penalty function p penalises what we would consider to be unrealistic or 

unreasonable values of  θ. This is the basic idea behind penalised likelihood (keep in mind that 

the penalty function is independent of  the data). "Extreme" values, like infinite regression 

parameters, odds ratios near zero or infinity, or probabilities near zero or one, are examples of  

this unrealistic value. (Fang Wang et al., 2019; Patrick, 2021).

Simply put, Bayesian penalised likelihood refers to the study of  the posterior mode's 

asymptotic and frequentist characteristics, or the maximum a posteriori (MAP) estimator 

Fraga & Wang, (2005); Alves, Neves, & Ros_ario, (2017). Simulation method studies allow 

researchers to answer specific question about data analysis statistical power, and best practices 
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for obtaining accurate results in empirical research.” (Hallgren, 2013), Simulation is a 

technique that can be used in any field of  study but most people are not aware of  it robustness 

of  this tool like statistical procedure under ideal and non-ideal conditions.

Simulation can be carried out using different statistical soft ware's like R-software, SPSS, 

Excel etc and there are different methods of  conducting simulation like Monte-Carlos 

method, inversion method etc. It is use to generate parameters wish can be used to test or 

descript probabilities models. Monte-Carlo method is handy for transforming problems of  

probabilistic nature into deterministic computations using the law of  large numbers: eg you 

want to access the future value of  your investment and to see what is the worst-case scenario 

for a given level of  probability for such and many more real-life tasks you can use the Monte 

Carlo method. Ibrahim I. S., Doguwa S. I. et al (2023) said that the vast class of  computational 

algorithms known as "Monte Carlo simulations" uses replicated random sampling to produce 

numerical results. The main idea is to introduce randomness to address problems that could be 

theoretically deterministic.

Methodology 

Derivation of the EOGEED distribution

Maiti & Pramanik (2015) developed a distribution called Odd Generalized Exponential-

Exponential Distribution (OGEED) and proposed it for modelling life data. One of  the sole 

aims of  developing a new distribution is to make the existing distribution more flexible for use 

especially for statistician to make use of  on real life data to solve existing problems at hand. In 

statistics, distributions are used to describe real world phenomena. 

In order to model or simulate life time data, we plan to suggest a new distribution termed the 

Extended Odd Generalised Exponentiated Exponential Distribution (EOGEED).

We will use the generalize (G-classes) distribution by Gupta et al., (1998)

Therefore, the CDF of  the proposed distribution is 

And the PDF is obtained as follows by differentiating F(x) which is our CDF in equation (2) 

with the respect to x

Using function of  a function
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Hence equation (5) is the PDF of  our propose distribution with x > 0 as random variable and α 

> , λ > and θ > α, λ, and θ0 0 0 where  are shape and scale parameters respectively. 

 

Maximum likelihood Estimation

The parameters of  EOGEED (  can be estimated using the method of  likelihood α, λ, and θ)

estimation (MLE). Let X = (x ; x ; …………; x ) be a sample size from the EOGEED with 1 2 n

parameter vector     .

Penalized MLE

Then we take natural log of  likelihood function with penalty term
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We take the partial derivative w.r.t to the parameters  and equate to zero.α, λ, and θ

Results

Here we used the Monte-Carlo method to generate random data from the Extended Odds 

Generalized Exponential-Exponential Distribution. 

A Monte-Carlo simulation study was carried out considering N=1000 times for selected 

values of   Samples of  size 250, 100 and 50 were considered and the required α, λ, and θ.

numerical evaluations are carried out.

Table 1: The descriptive Summary of  the simulated dataset base on different sample size

Table 2: Maximum likelihood estimate

Table 3: Penalized maximum likelihood estimate

 

N Mean
 

Median
 

Mode
 

Variance
 

Skewness
 

Kurtosis
 

Min
 

Max

250 0.57546 0.47927 0.1 0.17018 0.61615  -0.48074  0.00066  1.70018

100 0.50317 0.3844 0.1,0.3 0.15065 0.93421  0.09022  0.01609  1.596

50 0.64529
 

0.57784
 

0.1
 

0.19743
 

0.40497
 
-0.71457

 
0.00066

 
1.65605
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Table 4: Sample performance comparisons for the simulated data (MLE)

Table 5: Some estimated test statistics

Table 6: Bias of  EOGEED parameter estimation of  MLE, and PMLE

Table 7: RMSE of  EOGEED parameter estimation of  MLE, and P MLE

Result and discussion of finding for the simulated data set

Using the simulated data set shows that our distribution is positively skewed which means that 

it will fit right skewed data set as show in table 1. Three sample size was considered n=250, 100 

and 50. Table 4 show that our distribution fits better with smaller sample size because the 

values of  AIC, CAIC, BIC, HQIC have their least value when n=50, (49.70368, 50.22541, 

55.43970, 51.888 and 21.85184 respectively). The Anderson – Darling values of  all samples 

show that they follow or come from same probability distribution. Also, the Kolomogorov 

Smirov result (p-value) shows that the samples are from same population and come from same 

probability distribution. The values of  the biases of  both of  MLE and PMLE are tending to 

zero as seen in Table 6. Also, the result of  the RMSE show that the PMLE is better base on the 

value on Table 7. 

 Performance measure   n=250  n=100  n=50  
AIC

 
190.0613

 
59.42628

 
49.70368

 CAIC

 

190.1589

 
59.67628

 
50.22541

 BIC

 

200.6257

 

67.24179

 

55.43970

 
HQIC

 

194.3132

 

62.58936

 

51.888

 
(log(likelihood))

 

92.0360

 

26.71314

 

21.85184

 

 Sample size (n)  Anderson darling  Kolomogorov Smirov  
D

 
p-value

 250

 
0.2067454

 
0.32672

 
0.9523

 100

 

0.4133306

 

0.090121

 

0.3911

 50

 

--0.2162163

 

0.075214

 

0.9196
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Conclusion

The simulation study shows that the PMLE gives a better estimate compared to MLE and our 

distribution perform better with small sample size than bigger sample as seen in our result 

above.
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