
page 78 - IJIRETSS

Automated Code Generation & AI Tools: From Ideas to
Applications

1 2Joni Turunen & Aleksanteri Fagerholm
1&2Lappeenranta- Lahti University of Technology, LUT - Finland

Article DOI: 10.48028/iiprds/ .v12.i1.06ijiretss

A b s t r a c t

The Technology Report discusses how AI is changing so�ware
development, with a focus on automated code generation. It examines
the latest AI research, tools, and technologies transforming the �eld.

�e study evaluates the pros and cons of AI-driven code generation and its
impact on efficiency, productivity, and so�ware quality.

Keywords: Arti�cial Intelligence (AI), Technology, ChatGPT, Copilot

Corresponding Author: Joni Turunen

First Published: h�ps://www.researchgate.net/publication/376174254_Technology_Report_
From_Ideas_to_Applications

IJIRETSS
International Journal of Innovative Research in Education, Technology & Social Strategies

p-ISSN: 2465-7298 | e-ISSN: 2467-8163
Volume 12, Number 1 May, 2025

h�ps://internationalpolicybrief.org/international-journal-of-innovative-research-in-education-technology-and-social-strategies-volume-12-number-1/

https://internationalpolicybrief.org/international-journal-of-innovative-research-in-education-technology-and-social-strategies-volume-12-number-1/

page 79 - IJIRETSS

Background to the Study
In an era where digital transformation in�uences every corner of our lives, touching even the
very healthcare solutions keeping us alive [3], the way we develop so�ware and applications
has also seen radical shi�s. �e advent of arti�cial intelligence (AI) is changing how we
interact with applications and how we create them. �is technology report delves into a
futuristic yet increasingly plausible avenue: the use of AI in the automatic generation of
applications and other products too [4] directly from user prompts varying from ideas to
So�ware Requirement Speci�cation (SRS) documents, user stories and other textual input
that transform ideas to applications. In this report, we seek to answer, 'How can AI help create
applications without direct human involvement in code-writing?' and who do these new
possibilities affect?

Motivation
Since late 2022, a�er OpenAI released the GPT3 large language model (LLM) to the public in
the form of the ChatGPT, there has been increasing a�ention to AI implementations in public.
Discussions of hypothetical Arti�cial General Intelligence, or AGI for short, with the ability of
an AI system to understand, learn and apply knowledge in a wide variety of contexts, much like
a human can, have spurred as the AI-leap has taken over the digital world. Outside of
academia, a�empts to implement AGI-like systems started appearing on GitHub soon a�er
OpenAI revealed its GPT3 model via API to the public, most notably BabyAGI, AutoGPT
[5,6] and ChatGPT plugins. LLM-based systems taking an iterative approach that can use
external tools to grasp larger tasks have become a new paradigm for generative code
generation called AI agents [7].

While the LLMs and how we use them keep evolving and constraints like the size of query
context are relieved by increasing the sequence length or parallel prompting [8,9,10], several
efforts exist to create projects that build on these new capabilities. Pekka Abrahamson's AI Lab
at Tampere University is researching how to prompt these models and utilize them for
So�ware Engineering [11]. �ese early a�empts and research efforts show that the LLMs can
be wielded to act in different so�ware development roles, from developer to product owner to
tester. Similar approaches have been seen from the likes of Microso�, releasing AutoGen as
open source to the public and implementing AI agents to solve complex so�ware engineering
tasks to produce applications [12]. �ese early projects have shown that trivial programs like a
snake game can easily be achieved in minutes. AI/ML has been receiving huge interest in the
business world and in academic research efforts. New AI/ML research papers are being
published with high volume [13]. AI/ML is causing a new disruption in digitalization that
touches all aspects of work, education and industry [7]. From our (authors') work experience,
the possible performance, velocity, and monetary opportunities are strong drivers for AI
implementations in the so�ware engineering �eld. Learning and utilizing this new, rapidly
evolving technology can mean a competitive edge in the business domain and later evolve into
a requirement to be competitive. Finland and other EU countries have needed more
developers in the past few years. �is bo�leneck in the So�ware industry is holding us back
[14], and we believe AI-generated code could help alleviate this problem.

page 80 - IJIRETSS

In this technology report, we display our research �ndings considering the current state of AI
technologies considering the code generation from "Ideas to applications". Our technology
report strives to �nd the frameworks and methods so�ware engineers and companies could
utilized to build so�ware solutions faster, more efficiently and more securely. By
understanding the current possibilities, we can be�er analyse the impacts this new AI leap is
causing and understand what the future may hold for so�ware engineering.

Scope
While this topic is expansive, this report will focus on the current capabilities of AI in
automated code generation, drawing from real-world examples and cu�ing-edge research.
Furthermore, while it is essential to stay present, we will also evaluate future capabilities,
making informed predictions about the technology's direction and potential effects in the
so�ware engineering domain by examining the latest research papers and predictions. �is
technology report is aimed at decision-makers, managers and developers in so�ware
engineering. �e report focuses on AI-generated applications from the viewpoint of a
so�ware company operating from the EU, building on top of available platforms, APIs and
existing LLMs. Producing one's own LLM is outside the scope of this report, as it is very
demanding in terms of computational resources and required capital.

We recognize that the AI leap has touched many �elds and is changing the world for all digital
content. While the socioeconomic impacts and ethics regarding the use of AI are essential
topics, our report views the subject from a technological viewpoint, focusing on the impacts
and bene�ts of so�ware companies and businesses. While the capabilities of AI and the
generative code outcomes are the priority, the impacts on so�ware engineering are of interest
as well. �erefore, Impacts and bene�ts are considered by studying the So�ware Engineering
stakeholders. Our scope is to evaluate possible impacts on the job market, company
performance and pro�tability and how the work of so�ware engineers is expected to
transform.

Data Collection and Processing Methodology
During the beginning of this task, we agreed on our data collection and processing
methodology. Our idea was to read research around our topic, post the most in�uential links
to our digital work environment and build our scope from there. A�er our initial literature
gathering the scope became clearer and then we moved into processing of these papers. �e
processing methodologies included studying and harvesting the parts of these papers which
supported our research scope. We built our hypothesis and technical review around these
studies and re�ected our �ndings with each other. From the �ndings throughout the research,
we were able to build the structure to this report and from there it was efficient to split between
the areas where both of us worked. �e writing of this report was partly challenging, since new
relevant material was published weekly. Due to this a lot of the material lacked peer review's,
making them part of grey literature. In addition to this, the research wasn't able to keep up with
the ever-changing landscape of AI, this resulted in deprecated research data.

page 81 - IJIRETSS

Understanding recent research and development
�e landscape around so�ware development has been evolving and reshaping quite rapidly
amid the introduction of automated code generation and AI tools. �is rapid growth had an
explosive ignition with the release of ChatGPT to the public audience, where the general
interest around GenAI spiked in a very short time span. �is chapter aims to lay out the
timeline around the recent research and development made in this domain by looking at the
research and innovations which have sculped the sector in the past couple of years. Since the
GenAI tools which have sparked the initial interest of so�ware developers were introduced in
the late 2021, this chapter scopes the timeline from that point forward.

Figure 1: GenAI related releases on a timeline

During the past few years GenAI has not only been able to establish foothold in the so�ware
development �eld, but it has also restructured on so�ware engineers approach coding and
code creation. �is will possibly mean that future so�ware development will increasingly be
incorporated with auto-generated code and the capabilities to work with such tools needs to
be taught within these roles and in the curriculum of current students [15]. �is change isn't
just a new trend, but it portrays a shi� that is happening on how certain parts of so�ware is
planned, created, and maintained. With the tools like ChatGPT and Copilot the capabilities
for automated code generation has greatly improved. If we look at Figure 1, we can roughly see
the release timeline for different LLM's which have gained the a�ention from the public. It all
started with the announcement of GitHub's Copilot which introduced an AI leveraged pair
programmer tool. �e announcement was able to ignite the discussion on how LLM could
help developers to do tasks which Copilot could provide the code for. �e Copilot had a
limited beta testing environment, so it wasn't released out for all public to test. A li�le while
a�er during November of 2022, OpenAI released their main product ChatGPT-3 out to the
public which generated signi�cant interest from wide range of various �elds, a�racting
developers and other users to its userbase. �e launch of this was huge and it became the
fastest growing website during its time, by being able to generate 100 million users in just two
months [16]. Introduction of ChatGPT-3 to the public was a catalyst accelerating the interest
of public crowds, and it wasn't just its users, but investors jumped in as well and the race for
publishing AI research and products increased signi�cantly.

Following the release of ChatGPT, other companies had to announce their products as well, to
convey the trust of investors. In the early stages of year of 2023, additional companies rose to

page 82 - IJIRETSS

public stage to �ght for space in this new emerging market. From the current big tech
companies, Google and Facebook revealed their products to the market with the hopes of
gaining a�raction from the public. �ese releases were able to offer public and researchers
different LLM's which clearly differed from the GPT model 3. For example, LLaMA got
recognition on outperforming the GPT model 3, even though the model was 10 times smaller
compared to the OpenAI's product. �e research around LLamMa also demonstrates that
solely using publicly accessible data can produce very competitive models without the need
for utilizing proprietary datasets [17]. Research around Bard highlighted its access to internet
but pointed out that where GPT had limitations in biases around data, Bard itself is limited
with biases of the internet [18]. �e releases of all these products in such a short timespan
creates positive race towards the development of LLM's, where the competition and co-
existence of multiple models feed diversity and innovation in their approaches. �is also
provides researchers multiple different angles to understand the bene�ts, obstacles and
advancements which this industry needs to understand. Additionally, going forward this
landscape needs to balance between open-source policies and proprietary advancements,
while challenging its users to navigate through unknown data and messaging about collective
progress.

Tools and technologies related to AI code generation
In this chapter, we will give a general overview of different technologies and tools related to
code generation using AI. By introducing the vast possibilities of different tools and
techniques, the report aims to broaden the view of so�ware engineers, managers, product
owners and decision-makers.

AI assistants for so�ware developers
GitHub copilot was introduced to a technical preview in July 2021 and was later launched as a
commercial product. CoPilot stirred opinions as the public started using it concerning code
quality, misuse, and general code security [19]. CoPilot integrates with the developer's IDE,
like Visual Studio Code or IntelliJ. CoPilot continues to evolve and has added new features,
including a chat-like interface to ask for explanations and code �xes for speci�c program code
segments in the IDE. While GitHub CoPilot powered by Microso� and OpenAI is a paid
service, AWS released Code Whisperer in July 2023, which takes a similar approach,
integrates with the IDE tools and is a free service.

�e use of AI assistants like CoPilot in so�ware engineering tasks shows productivity
increases via a 55.8% increase in completion time and hints at a be�er success rate on
programming tasks [20]. AI assistants are limited by the context window restrictions that
does not always catch important code segments to produce accurate results during inference.

Fine-tuning LLMs
Lo� has received signi�cant a�ention for �ne-tuning methods [31]. In addition to the
techniques presented, one of the more recent methods, Quanitized Lo� or QLo� [32],
looks promising for �ne-tuning Open Source LLMs on precise domain knowledge that
requires so�ware engineering tasks. QLo� can reduce the computational requirements of

page 83 - IJIRETSS

the �ne-tuning process, lowering the costs of �ne-tuning pre-trained models to suit speci�c
tasks. W hile community-developed models are becoming more available v ia
services/communities such as Hugging Face, they may pose threats and risks to so�ware
companies due to the unclear �ne-tuning data and methods to generate the new model.
Within the Open Source LLMs, we have also noticed uncensored, �ne-tuned chat models that
provide answers to unethical questions.

Figure 2: Lo� �ne-tuning principle for adding new parameters (weight AB) [24]

Agent Approach and Managing Context Windows
Most current LLMs provide a limited context window for inference. For code generation
purposes and so�ware engineering tasks in particular, this presents undesired restrictions.
Tasks related to code refactoring or debugging and understanding existing code structure and
functions with context window limitations reduce the accuracy on large code bases. To
manage this issue, an iterative approach to code generation equips AI with the possibility to re-
evaluate its earlier decisions and test outcomes. �is feedback loop for AI allows earlier
mistakes to be �xed and errors corrected. One of the �rst publicly available implementations
to achieve these was AutoGPT [6]. AutoGPT takes in several LLM APIs and uses those to
leverage more recent factual knowledge or to generate different output formats like voice via
ElevenLabs AI API. Using AutoGPT solves some of the issues, but prompt management
becomes an issue and requires 'context switching' for the session to the chosen LLM API.

Figure 3: Use case demonstrations for AutoGen [8]

page 84 - IJIRETSS

Microso� introduced the AutoGen framework in August 2023, which enables multiple AI
agents with customisable roles and the ability to engage in agent-to-agent conversations. With
this approach, we can de�ne different so�ware engineering roles such as developer, tester,
product owner, business analyst, requirements engineer and others to engage in the so�ware
project and the conversation [12]. AutoGen allows an iterative approach where the agents can
detect �aws and mistakes and refactor the code in alignment to match the original request.
While AutoGen conversational agents help to handle larger contexts and can chop tasks to
move towards the goal in smaller steps, the context of larger code bases is still challenging to
handle.

Figure 4: MemGPT Virtual Context management via Functions to mimic in�nite context
length [29]

MemGPT was introduced on October 12th, 2023, and it introduces a virtual context
management system that resembles operating systems handling slow and fast memory in the
form of random-access memory and persistent data volumes. MemGPT achieves this by
injecting the context window with instructions to handle memory and use function-calling
capabilities in recent LLMs. Applying MemGPT creates an illusion of an in�nite context
window [34]. Available MemGPT libraries allow us to set up AutoGen agents using
MemGPT for LLM APIs, including GPT-3.5 and GPT-4 models, but also for open-source
LLMs like Mistral 7B.

Knowing the Advantages and Disadvantages
�e fast adaptation of new technologies will reveal advantages and disadvantages to its users.
�ese new evolving tools offer their users new ways to increase efficiency, streamline
development processes and harness new protocols around problem-solving. As promising as
this sounds, with this new technology, we gain both positive and negative outcomes. Since
LLM research is a relatively new study subject, it is rather challenging to keep track of the
current emerging advantages and disadvantages these researchers have proven. Moreover,
with these negatives comes the need to control things [35]. At this point, the new research
lacks real-life use cases with empirical data, so its claims give us guidelines on what these
advantages and disadvantages might consist of.

With the disadvantages, our focus is on so�ware developers who need to become more
familiar with what happens under the hood of these LLM products. It may not be clear to the
public that LLMs do not serve as repositories that store explicit knowledge; instead, they are

page 85 - IJIRETSS

dynamic systems that analyses and learn from different data pa�erns. �is means that when
these people unfamiliar with the subject are reading the text that these machines generate,
they cannot distinguish which of the content provided has been made by humans and which
additions around the content are machine-generated. �is might not sound like a big thing,
but the a�ereffect generates the problems around this ma�er. By being unable to distinguish
between these two, the user of GenAI is faced with ethical dilemmas that they might be
unaware of. �e text they obtain might contain, for example, plagiarism, violation of privacy,
misinformation, and biased data towards certain demographic groups. �ere haven't been
proper solutions for this disadvantage yet, but the legislation is vastly evolving, and different
public �gures have brought transparency on what is being done on behalf of new laws around
GenAI. �e user group, which is more familiar with LLM's behaviour and has a good
understanding of the domain where they operate, have a be�er starting point to overcome this
obstacle. �ey can overcome the “black-box” disadvantage by utilising LLMs more as
thinking tools while keeping in mind that they should have capabilities and means of
validating the outputs they provide. �is solution remains effective as long as these machine-
generated texts are not found in different open-source materials where experts in these
domains cannot distinguish the text between human-made and machine-generated [36].

In addition to the user groups, disadvantages and technical constraints around LLM's also
exist. For example, the Context Window is a restriction in which there is a workaround, but
the setup of the LLMs and environments is still complicated and expensive. Research about
the outcome quality is lacking. �e context is only partially captured on a large code basis, and
the LLMs can generate con�dently sub-optimal answers. With our experience using these
systems, especially GPT4 and CoPilot, AI can provide accurate and fast answers if the
program is small in size and appropriately structured. Adjusting and giving more context to
the LLM can improve the answer, but a�er 2-3 interactions with the intent to get be�er results
from LLM, the accuracy withers, and the same time and effort is used be�er in actual
implementation by the developer.

AutoGen systems should include human intervention, validation, and approval checks from
the AI; otherwise, the process can easily slip down the wrong track. As described, the current
state only has good accuracy with human intervention. From the 'ideas to applications' point-
of-view, the current state cannot provide applications from a general prompt describing non-
naive applications. For the advantages, we can start by categorising different user groups on
how they could utilise these tools in the so�ware engineering �eld. For requirement
engineering, GenAI can offer different development pa�erns where stakeholders can assess
the accuracy of various so�ware requirements; although the LLM-generated requirements
might contain certain abstractive approaches, studies have shown them also to be coherent
and comprehensible. In order to say that so�ware developers gain an advantage from the
utilisation of GenAI, it is a li�le bit more complex situation. �roughout history, they have
incorporated different automated tools that have made their work easier and faster, but this
time, it might require some additional training for these models to work alongside developers.
At this point, the intuition to utilise these tools bene�cially might derive from the background
or seniority of the developer. �ey can, for example, use GitHub Copilot to generate unit tests

page 86 - IJIRETSS

from the code they have shown to the model. However, even though the model provides
working output, it is up to the developer to con�rm that the solution is applicable. For the
more junior developers or students, these GenAI tools could operate as chatbots and help
them with different coding tasks outside the classroom. In their content, they would explain
what errors the student might have made in their solutions. Also, in addition to this, the model
could assess the student's code and provide answers about the state of the solution and which
improvements the student could make to it. In so�ware project management, GenAI could
help by providing be�er resource allocation, performing cost estimations, organising
requirements according to the technical strategy, and planning sprints using the resources at
hand [21].

Conclusion and Findings
In this chapter, we summaries the research �ndings and identify the key bene�ciaries and
negatively impacted stakeholders of automatic code generation and AI tools.

Figure 5: Stakeholder analysis of GenAI positive and negative impacts

Research has shown that automatic code generation and AI tools have the potential to bring
signi�cant bene�ts to various stakeholders. �ese tools can enhance the development
experience for developers by enabling them to start new projects quickly, avoid wasting time
on boilerplate code, or help in refactoring and improving the performance of their code
quickly. Additionally, these tools provide so�ware company owners with the opportunity to
increase their velocity and productivity. By automating speci�c tasks, developers can focus on
more complex and creative aspects of their work. Automatic code generation and AI tools can
bring signi�cant bene�ts to customers. By providing more options in the market, they have
the potential to improve the overall quality of so�ware development. With the assistance of
AI, developers can deliver more robust and efficient solutions that meet customer
requirements effectively.

page 87 - IJIRETSS

Bene�ciaries
�e bene�ciaries of automatic code generation and AI tools are manifold. Firstly, so�ware
company owners can greatly bene�t from these tools as they can signi�cantly increase the
velocity and productivity of their companies. By automating speci�c tasks, companies can
accelerate their development process and improve overall efficiency.

Secondly, customers can enjoy a broader range of options in the so�ware market due to the
use of these tools. Furthermore, automatic code generation and AI tools have the potential to
enhance the quality of the so�ware being developed, resulting in more reliable and efficient
solutions.

Lastly, developers can bene�t from these tools by improving their development experience.
With automatic code generation and AI tools, developers can easily refactor their code and
optimise its performance, enabling them to focus on more complex and creative aspects of
their work.

Negative impacts
�e increasing use of automatic code generation and AI tools may negatively impact
traditional code developers who are reluctant to engage GenAI tools and methods. �ey may
need help regarding market demand and competitiveness as these tools can automate tasks
that manual developers traditionally perform. Entry-level job descriptions might vanish, and
so�ware engineering tasks become more demanding, making it harder for junior-level
programmers and graduates to enter the market. So�ware development and the IT industry,
in general, are known as fast-moving �elds, but due to the AI leap and recent developments,
the need to adopt new methods and learn new skills is faster than usual.

�ere may also be negative impacts on job markets concerning so�ware engineering roles if
conversational AI agents can scale to the challenges of enterprise-level code bases. Start-ups
and knowledgeable individuals can jump-start new businesses and challenge monolithic
traditional companies that cannot respond to the change fast enough. New competition may
cause unpredictable challenges for many of these old so�ware companies.

�e digital divide (DD) between actors who can invest in AI-capable hardware for training
and �ne-tuning LLMs and utilise existing LLMs to their full potential and those who can only
subscribe to services will grow the gap larger. We expect the DD between data holders, LLM
providers and the users to grow. Also, the existing DD between different digitalisation levels in
nation-states is going to be affected. Pioneering countries can wield AI implementations in
their defence forces and military endeavours, while other less advanced nations face new risks
and threats to their sovereignty.

Societies that are affected by all digital services are slowly starting to take advantage of AI
technologies and may see growth in their GDP but also challenges in job markets and are
required to invest in education. Concerns about data protection and privacy are highlighted in
general, not only because of so�ware development and the use of AI in applications. Concerns

page 88 - IJIRETSS

of immaterial rights for so�ware companies are also a problem and need regulation and
governance from public administrations that currently need to catch up.

Final �oughts
While automatic code generation and AI tools have their advantages, it is essential to consider
their limitations and potential shortcomings. �ese tools may only partially replace human
intervention and validation; at least, that is the case now. Without proper human oversight,
there is a risk of the process deviating from its intended track. Moreover, the accuracy and
capabilities of these tools vary as the models tend to produce creative outcomes by default,
making them unpredictable for so�ware developers, managers and companies. In the
so�ware industry, automatic code generation and AI tools have immense potential to bene�t
so�ware company owners, customers, and developers. However, it is crucial to consider the
negative impact these tools might have on all the bene�ciaries. Also, we must consider the
limitations of such tools to ensure their successful implementation and utilization in the
future.

Figure 6: Multi-modal AI system dissociation between LLMs language capabilities and
factual world knowledge [30]

Research agendas are being wri�en and published as of the time of writing this tech report,
de�ning future research needs [21]. New information and knowledge are being introduced in
grey literature services such as arXiv.org. Research is moving fast, and new �ndings surface
every week. Some researchers suggest a need for multi-modal AI systems where factual world
knowledge would be detached from the language capabilities, and the current LLM
architecture would be further dissected into modules to reduce the computational and
monetary costs of training LLMs in the future [37].

Experts in the �eld are making bold guesses about when the next steps towards Arti�cial
General Intelligence (AGI) will be taken. Estimations of achieving AGI vary from 12-24
months. �e time will tell when the next leap happens. In general, whatever the practical
implementations are, we expect them to be integrated and enhance current automation
solutions, like robotic process automation [38]. Businesses are racing to adopt AI

page 89 - IJIRETSS

technologies into their products, causing a dilution of the term AI. Some of these solutions
may be wrappers on OpenAI's API, while some are simple algorithms. Continuous
investment is needed in these companies developing GenAI for the next leap to happen. Some
of the investment initiatives stem from the research made around these language models,
which in turn may shape the grey literature as organizations try to acquire the investments. For
us to be�er understand the state of these language models, peer-reviewed research is essential.

References
[1] Brown, T. B., et al. (2020). Language models are few-shot learners, ArXiv.Org,

h�ps://doi.org/10.48550/arxiv.2005.14165.

[2] Va s w a n i , A . e t a l . (2 0 2 3) , A � e n t i o n i s a l l y o u n e e d , A r X i v. O r g ,
h�ps://doi.org/10.48550/arxiv.1706.03762.

[3] Usmani, U. A., et al. (2023). Arti�cial intelligence applications in healthcare, Proceedings of
Eighth International Congress on Information and Communication Technology.
ICICT 2023. Lecture Notes in Networks and Systems, vol. 694, edited by X.S. Yang et
al., Springer, h�ps://doi.org/10.1007/978-981-99-3091-3_89.

[4] Ghoreishi, M., & Happonen, A. (2020). New promises AI Brings into circular economy
accelerated product design: A Review on Supporting Literature." E3S Web of
Conferences, 158, ,pp. 1-10, doi: 10.1051/e3sconf/202015806002.

[5] Nakajima, Y. & Babyagi, G. (2023), h�ps://github.com/yoheinakajima/babyagi.

[6]Richards, T. B. (2023). Autog pt." github , h�ps://github.com/Signi�cant
Gravitas/AutoGP

[7] Benaich, N. (2023). State of AI report, Air street capital, 2023, www.stateof.ai/.

[8] Ding, J. et al. (2023). LongNet: Scaling transformers to 1,000,000,000 Tokens, arXiv.org,
h�ps://doi.org/10.48550/arxiv.2307.02486.

[9] O p e n A I . (2 0 2 3) . M o d e l s . o p e n A I d o c u m e n t a t i o n , O p e n A I , 2 0 2 3 ,
platform.openai.com/docs/models. Accessed 3 Nov..

[10] Ratner, N. et al. (2023). Parallel context windows for large language models.” arXiv.org,
h�ps://doi.org/10.48550/arxiv.2212.10947.

[11] Abrahamson, P. (2023). Generative AI, large language models and ChatGPT: What �
should the so�ware companies do now?" Lahti So�ware Day, 29 Aug., Lahti, Finland.

[12] Wu, Q. et al. (2023). AutoGen: Enabling Next-Gen LLM Applications via multi-agent
conversation, h�ps://doi.org/10.48550/arxiv.2308.08155.

page 90 - IJIRETSS

[13] Krenn, M. et al. (2022). Predicting the future of AI with AI: High-quality link prediction in an
exponentially growing knowledge network." arXiv.org,

[14] Roiha, R. (2023). So�ware �nland "An overview to the state and the future of the Finnish tech
companies, Lahti So�ware Day, 29 Aug., Lahti, Finland.

[14] Becker, B. A., et al (2023), Programming Is Hard – Or at least it used to Be: educational
opportunities and challenges of ai code generation , h�ps://dl.acm.org/,
h�ps://dl.acm.org/doi/pdf/10.1145/3545945.3569759

[16] Gustafsson, S. (2023). Generative language models for automated programming Feedback,
diva-portal.org, h�ps://www.diva-portal.org/smash/get/diva2:1784396/
FULLTEXT01.pdf

[17] Azhar, F, et al. (2023). LLaMA: Open and efficient foundation language models, arXiv.org,
h�ps://arxiv.org/pdf/2302.13971.pdf.

[18] Singh, S. K. et al. (2023). Chat GPT & google Bard AI: A review, 2023 International
Conference on IoT, Communication and Automation Technology (ICICAT), IEEE,
pp.1–6, h�ps://doi.org/10.1109/ICICAT57735.2023.10263706.

[19] Moradi, D. A. et al. (2023). GitHub copilot ai pair programmer: Asset or liability?, �
�e Journal of Systems and So�ware, 203, 111734–h�ps://doi.org/10.1016/
j.jss.2023.111734.

[20] Sida, P. et al. (2023). �e impact of AI on developer productivity: Evidence �om GitHub�
copilot, arXiv.org,, h�ps://doi.org/10.48550/arxiv.2302.06590.

[21] Nguyen-Duc, A. et al. (2023). Generative Arti�cial Intelligence for So�ware
Engineering - A Research Agenda.” ArXiv.Org, , h�ps://doi.org/10.48550/
arxiv.2310.18648.

[22] Devlin, J. et al. (2019). BERT: Pre-Training of Deep Bidirectional Transformers for
Language Understanding.”arXiv.org, h�ps://doi.org/10.48550/arxiv.1810.04805.

[23] Liu, Y. et al. (2019). RoBERTa: A robustly optimized BERT pretraining approach,
arXiv.org, h�ps://doi.org/10.48550/arxiv.1907.11692.

[24] Raffel, C. et al. (2023). Exploring the limits of transfer learning with a uni�ed text-to-Text
transformer., arXiv.org, h�ps://doi.org/10.48550/arxiv.1910.10683.

[25] Yang, Z. et al. (2020). XLNet: Generalized autoregressive pretraining for language

understanding, arXiv.org, , h�ps://doi.org/10.48550/arxiv.1906.08237.

page 91 - IJIRETSS

[26] Singh, M. et al. (2023). CodeFusion: A pre-trained diffusion model for code generation,
arXiv.org, , h�ps://doi.org/10.48550/arxiv.2310.17680.

[27] Rozière, B. et al. (2023). Code Llama: Open foundation models for code, arXiv.org,
h�ps://doi.org/10.48550/arxiv.2308.12950.

[28] Touvron, H. et al. (2023). Llama 2: Open foundation and �ne-tuned chat models, arXiv.org,
h�ps://doi.org/10.48550/arxiv.2307.09288.

[29] Chen, M. et al. (2021). Evaluating large language models trained on code, arXiv.org,
h�ps://doi.org/10.48550/arxiv.2107.03374.

[30] Jiang, A. Q., et al. (2023). Mistral 7B, arXiv.org, h�ps://doi.org/10.48550/
arxiv.2310.06825.

[31] Hu, E. J., et al. (2021). Lo�: Low-Rank adaptation of large language models, �
arXiv.org, h�ps://doi.org/10.48550/arxiv.2106.09685.

[32] De�mers, T. et al. (2023). QLo�: Efficient �netuning of quantized LLMs, arXiv.org,
h�ps://doi.org/10.48550/arxiv.2305.14314

[34] Packer, C. et al (2023). “MemGPT: Towards LLMs as Operating Systems.” arXiv.org,
h�ps://doi.org/10.48550/arxiv.2310.08560.

[35] Usmani, U. A., et al. (2023). Enhancing arti�cial intelligence control mechanisms: Current
practices, Real life applications and future views, Lecture Notes in Networks and
Systems, 559, , pp. 287-306. doi: 10.1007/978-3-031-18461-1_19.

[36] Strasser, A. (2023). On pitfalls (and advantages) of sophisticated Large Language
models, arXiv.org, , h�ps://arxiv.org/�p/arxiv/papers/2303/2303.17511.pdf

[37] Mahowald, K, et al. (2023). Dissociating language and thought in large language models: A
cognitive perspective, arXiv.org, h�ps://doi.org/10.48550/arxiv.2301.066

	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95

